2023年中考数学冲刺题

发布 2022-01-08 06:36:28 阅读 6398

1如图,ab是⊙o的直径,c是ab延长线上一点,cd与⊙o相切于点e,ad⊥cd于点d.

1)求证:ae平分∠dac

2)若ab=3,∠abe=60°.

求ad的长;

求出图中阴影部分的面积.

2.如图,反比例函数y=x/k1(k1>0)与一次函数y2=k2x+1(k2≠0)相交于a、b两点,ac⊥x轴于点c.若△oac的面积为1,且tan∠aoc=2.

1)求出反比例函数与一次函数的解析式;

2)请直接写出b点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?

设直线ac与直线x=2交于点e.

1)求以直线x=2为对称轴,且过c与原点o的抛物线的函数解析式,并判断此抛物线是否过点e,说明理由;

2)设(1)中的抛物线与x轴的另一个交点为n,m是该抛物线上位于c、n之间的一动点,求△cmn面积的最大值.

4.阅读理解题:

定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.

例如计算:(2+i)+(3-4i)=5-3i.

1)填空:i3=__i4=__

化简成a+bi的形式.

5..如图,矩形abcd中,ab=4,ad=5,将矩形abcd绕点a顺时针旋转,得到矩形amnp,直线mn分别与边bc、cd交于点e、f.

1)判断be与me的数量关系,并加以证明;

2)当△cef是等腰三角形时,求线段be的长;

3)设x=be,y=cf(ab2-be2),试求y与x之间的函数关系式,并求出y的最大值.

6.材料一:在平面直角坐标系中,如果已知a,b两点的坐标为(x1,y1)和(x2,y2),设ab=t,那么我们可以通过构造直角三角形用勾股定理得出结论:

(x1-x2)2+(y1-y2)2=t2

材料二:根据圆的定义,圆是到定点的距离等于定长的所有点的集合(其中定点为圆心,定长为半径).如果把圆放在平面直角坐标系中,我们设圆心坐标为(a,b),半径为r,圆上任意一点的坐标为(x,y),那么我们可以根据材料一的结论得出:(x-a)2+(y-b)2=r2,这个二元二次方程我们把它定义为圆的方程.比如:

以点(3,4)为圆心,4为半径的圆,我们可以用方程(x-3)2+(y-4)2=42来表示.事实上,满足这个方程的任意一个坐标(x,y),都在已知圆上.

认真阅读以上两则材料,回答下列问题:

1)方程(x-7)2+(y-8)2=81表示的是以———为圆心,——为半径的圆的方程.

2)方程x2+y2-2x+2y+1=0表示的是以———为圆心,——为半径的圆的方程; 猜想:若方程x2+y2+dx+ey+f=0(其中d,e,f为常数)表示的是一个圆的方程,则d,e,f要满足的条件是———

3)方程x2+y2=4所表示的圆上的所有点到点(3,4)的最小距离是。

直接写出结果)

7.如图,在rt△abc中,∠bac=90°,ab=ac,点m、n在边bc上.

1)如图1,如果am=an,求证:bm=cn;

2)如图2,如果m、n是边bc上任意两点,并满足∠man=45°,那么线段bm、mn、nc是否有可能使等式mn2=bm2+nc2成立?如果成立,请证明;如果不成立,请说明理由.

8.如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点a和点b,与y轴相交于点d(0,8),直线dc平行于x轴,交抛物线于另一点c,动点p以每秒2个单位长度的速度从c点出发,沿c→d运动,同时,点q以每秒1个单位长度的速度从点a出发,沿a→b运动,连接pq、cb,设点p运动的时间为t秒.

1)求a的值;

2)当四边形odpq为矩形时,求这个矩形的面积;

3)当四边形pqbc的面积等于14时,求t的值.

4)当t为何值时,△pbq是等腰三角形?(直接写出答案)

9.如图,抛物线y=mx2+2mx-3m(m≠0)的顶点为h,与x轴交于a、b两点(b点在a点右侧),点h、b关于直线l:y=对称,过点b作直线bk∥ah交直线l于k点.

1)求a、b两点坐标,并证明点a在直线l上;

2)求此抛物线的解析式;

3)将此抛物线向上平移,当抛物线经过k点时,设顶点为n,直接写出nk的长.

2023年中考数学冲刺题

第11周测试卷。1 计算的值是。2 下列四个算式中,正确的个数有 0个1个2个3个。3 观察下列图形,并判断照此规律从左向右第2012个图形是 4 如图 abcd中,对角线ac和bd相交于点o,如果ac 12,bd 10,ab m,那么m的取值范围是。ab cd 5 某人在做掷硬币实验时,投掷次,正...

2023年中考备考数学冲刺题

一 选择题 共10小题,每小题3分,共计30分 1.4的算术平方根是 a.2b.2c.16d.16 4 我国第六次人口普查显示,全国总人口为1 370 536 875人 将这个总人口数 保留三个有效数字 用科学记数法表示为 a.13.7 x 108 b 1.371 x 109 c.1.37 x 10...

2023年中考数学训练冲刺题

1.先化简,再求值 其中x 2.2.如图,在矩形abcd中,点e f分别在边ad dc上,abe def,ab 6,ae 9,de 2,求ef的长。3 如图,点p的坐标为 2,过点p作x轴的平行线交y轴于点a,交双曲线 x 0 于点n 作pm an交双曲线 x 0 于点m,连结am.已知pn 4.1...