北师大版小学六年级下册数学《圆锥的体积》教案

发布 2020-08-22 07:15:28 阅读 7407

篇一。教学目标:1、通过动手操作实验,推导出圆锥体体积的计算公式。2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

3、通过学生动脑、动手,培养学生的观察、分析的综合能力。教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多**辅助教学课件。教学过程设计:

一、复习旧知,做好铺垫。1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)2、口算下列圆柱的体积。

1)底面积是5平方厘米,高6厘米,体积=?(2)底面半径是2分米,高10分米,体积=?(3)底面直径是6分米,高10分米,体积=?

3、认识圆锥(课件演示),并说出有什么特征?二、沟通知识、探索新知。

教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去**。这节课我们就来研究"圆锥的体积"。

(板书课题)

1、**圆锥的体积计算公式。

教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?学生回答,教师板书:

圆柱---转化)--长方体。

圆柱体积计算公式---推导)长方体体积计算公式。

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)

学生得出:底面积相等,高也相等。)

教师:底面积相等,高也相等,用数学语言说就叫"等底等高"。(板书:等底等高)

2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆。

柱体体积一样,就用"底面积×高"来求圆锥体体积行不行?(不行,因为圆锥体的体积小)教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?

(指名发言)

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

3)学生分组做实验,并借助课件演示。

教师深入小组中了解活动情况,对个别小组予以适当的帮助。)a、谁来汇报一下,你们组是怎样做实验的?b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

学生发言:圆柱体的体积是圆锥体体积的3倍)

教师:同学们得出这个结论非常重要,其他组也是这样的吗?学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

(板书圆锥体体积计算公式)教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)

4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?

(不需要)

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)(教师给体积公式与"等底等高"四个字上连线。)进一步完善体积计算公式:

圆锥的体积=等底等高的圆柱体体积×1/3=底面积×高×1/3v=1/3sh

教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

课件出示:想一想,讨论一下:?

1)通过刚才的实验,你发现了什么?

2)要求圆锥的体积必须知道什么?学生后讨论回答。

三、应用求体积、解决问题。1、口答。

1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

2、出示例题,学生读题,理解题意,自己解决问题。

例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

a、学生完成后,进行小组交流。b、你是怎样想的和怎样解决问题的。(提问学生多人)c、教师板书:

1/3×19×12=76(立方厘米)答:它的体积是76立方厘米3、练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

4、出示例2:要求学生自己读题,理解题意。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

1)提问:从题目中你知道了什么?

2)学生独立完成后教师提问,并回答学生的质疑:3.14×(4÷2)2×1.2×1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?..

5、比较:例1和例2有什么不同的地方?

1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。篇二。

教学目标:1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理解。

2.培养学生观察、实践能力。

3.使学生在解决实际问题中感受数学与生活的密切联系。教学重、难点:结合实际问题运用所学的知识教学理念:

1.数学源于生活,高于生活。

2.学生动手实践,自主学习与合作交流相结合教学设计:一回顾旧知:

1.圆锥的体积公式是什么?s、h各表示什么?2.求圆锥的体积需要知道什么条件?

3.还知道哪些条件也能计算出圆锥的体积?怎样计算?投影出示:

1)s=10,h=6 v=?(2)r=3,h=10 v=?(3)v=9.

42,h=3 s=?二运用知识,解决实际问题1.(投影出示例2:一堆小麦图)师:

有这样一堆小麦,你知道它的体积是多少吗?怎么办呢?

2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米。

1)麦堆的底面积2)麦堆的体积。

3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得数保留整千克数)

4.一个圆锥形沙堆,占地面积为3.14平方米,高1.

5米。(1)沙堆的体积是多少平方米?(2)如果每立方米沙约重1.

6吨,这些沙子共重多少吨?(结果保留一位小数)5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多少立方分米的木料?

(1)(出示图)什么情况下削出的圆锥是的?为什么?(2)削去的木料占原来木料的几分之几?

(3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出的圆锥是的呢?三综合练习。

1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为()厘米;和它等体积等高的圆锥的底面积为()厘米。

2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的圆柱体容器中,水面的高度是()分米。

3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是圆锥的几分之几?篇三。

一、学习内容:

教师提供小学数学六年级下册14页---17页。二、学生提供:

等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。三、学习目标:

1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。2、经历"类比猜想---验证说明"的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

四、重点难点:

重点:圆锥的体积计算。难点圆锥的体积公式推导。

关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。五、学习准备:

等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。

看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?

长方形的长等于三角形的底,长方形的宽等于三角形的高。你的发现真了不起。这种情况在数学中叫做"等底等高"。在"等底等高"的条件时,它们的面积又有什么样的关系呢?

三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。

六、布置课前预习点拨自学。

1、圆柱和圆锥有哪些相同的地方?2、圆柱和圆锥有哪些不同的地方?

3、圆锥的体积和圆柱的体积有什么关系呢?

请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟!按照预习中学生存在的问题,教师加以点拨。七、交流解惑:

它们的底面积相等,高也相等。

圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小。动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱。

装满。通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。组内交流组际解疑老师点拨。

八、合作考试。

1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)

2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底面半径约3分米,高约2.7分米,求沙堆的体积。(只列式不计算)

3、在打谷场上,有一个近似于圆锥的小麦堆,测底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(只列式不计算)

4、如图,求这枝大笔的体积。(单位:厘米)(只列式不计算)

5、将一个底面半径是2分米,高是4分米的圆柱形木块,削成一个的圆锥,那么削去的体积是多少立方分米?(口算)九、自我总结:

通过今天的学习,我学会了,以后我会在方面更加努力的。十、教学反思:

本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的**欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的**的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。

北师大版小学数学六年级下册《圆柱与圆锥》练习题

一 填空题。06立方分米 毫升1.08吨 吨 千克3日8小时 日8立方米16立方分米 立方米2 一个圆柱体的表面积是1884平方厘米,底面半径是10厘米,它的高是 厘米。3 圆柱的体积是75立方厘米,高是15厘米,底面积是 平方厘米。4 把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形...

北师大版小学数学六年级下册《圆柱与圆锥》练习题

一 填空题。06立方分米 毫升1.08吨 吨 千克3日8小时 日8立方米16立方分米 立方米2 一个圆柱体的表面积是1884平方厘米,底面半径是10厘米,它的高是 厘米。3 圆柱的体积是75立方厘米,高是15厘米,底面积是 平方厘米。4 把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形...

北师大版小学数学六年级下册《圆锥的体积》精编导学案

积 精编导学案。课题圆锥的体积课型新授课设计说明。本课时是在学生已经认识了圆锥的特征 掌握了圆柱的体积计算公式的基础上进行教学的,圆锥的体积计算公式的推导是本课时的教学难点。为了让学生直观地感知圆锥的体积与同它等底等高的圆柱的体积的关系,基于 引导学生主动建构知识 的新课标理念,结合学生的学情实际,...