工程问题(一)
工程问题指的是与工程建造有关的数学问题。其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。
工程问题是分数应用题的特例。但它同整数应用题中的工程问题一样,同样是研究工作效率、工作时间、工作总量三者之间的关系。所不同的是在整数应用题中的工程问题,工作总量、工作效率都告诉我们具体的数量,而分数应用题中的工程问题,一般不告诉具体的工作总量,也不告诉具体的工作效率。
解题的关键是根据分数的意义,把工作总量看作“1”,用完成工作总量所需时间的倒数表示工作效率。
工程问题的特点:
一般工程问题都是,已知独做的工作时间(或合作的工作时间),求合作的时间(或独做的工作时间)。
分析方法:从问题入手,确定是求谁来完成哪一部分工作量所需要的时间,就用要完成的那部分工作量除以谁的工作效率。
在分析解答工程问题时,一般常用的数量关系式是:
工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。
工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可。
工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。
工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。但在不引起误会的情况下,一般不写工作效率的单位。
例1 单独干某项工程,甲队需10天完成,乙队需15天完成。甲、乙两队合干5天后,剩下的工程乙队干还需多少天?
分析与解:以全部工程量为单位1。甲队单独干需10天,甲的工作效率是。乙的工作的效率是。两队合干的工作效率是(+)
由工作量=工作效率×工作时间,5天的工作量是(+)5
剩下的工作量是1-(+5
由工作时间=工作量÷工作效率,。剩下的工作量由乙队干还需要。
1-(+5〕÷=7.5天。
答剩下的工程乙队干还需7.5天。
例2 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?
分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。
答:甲队干了12天。
例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。问:甲队实际工作了几天?
分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了。
例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。这批零件共有多少个?
分析与解:这道题可以分三步。首先求出两人合作完成需要的时间,例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?
例6 甲、乙二人同时从两地出发,相向而行。走完全程甲需60分钟,乙需40分钟。出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。甲再出发后多长时间两人相遇?
分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。
我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。
答:甲再出发后15分钟两人相遇。
练习11.某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?
2.某工程甲队单独做需48天,乙队单独做需36天。甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。求乙队在中间单独工作的天数。
3.一条水渠,甲、乙两队合挖需30天完工。现在合挖12天后,剩下的乙队单独又挖了24天挖完。这条水渠由甲队单独挖需多少天?
则完成任务时乙比甲多植50棵。这批树共有多少棵?
5.修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?
6.蓄水池有甲、乙两个进水管,单开甲管需18时注满,单开乙管需24时注满。如果要求12时注满水池,那么甲、乙两管至少要合开多长时间?
7.两列火车从甲、乙两地相向而行,慢车从甲地到乙地需8时,比快车从。
40千米。求甲、乙两地的距离。
答案与提示练习2
2.14天。
3.120天。
4.350棵。
5.6000米。
6.8时。提示:甲管12时都开着,乙管开。
7.280千米。
工程问题(二)
上一讲我们讲述的是已知工作效率的较简单的工程问题。在较复杂的工程问题中,工作效率往往隐藏在题目条件里,这时,只要我们灵活运用基本的分析方法,问题也不难解决。
例1 一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成。如果甲、乙合做,那么多少天可以完成?
分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:
从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)
甲、乙合做这一工程,需用的时间为。
例2 一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后。
么还要几天才能完成?
分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作。
们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独。
例3 单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。问:
甲、乙二人合做需多少天完成?
分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的。
乙需要10+5=15(天)。甲、乙合作需要。
例4 放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?
分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一。
例5 某工程由。
一、二、三小队合干,需要8天完成;由。
二、三、四小队合干,需要10天完成;由。
一、四小队合干,需15天完成。如果按。
一、二、三、四、一、二、三、四、……的顺序,每个小队干一天地轮流干,那么工程由哪个队最后完成?
分析与解:与例4类似,可求出。
一、二、三、四小队的工作效率之和是
例6 甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整天做完,并且结束工作的是乙。若按乙、丙、甲的顺序轮流。
件工作,要用多少天才能完成?
分析与解:把甲、乙、丙三人每人做一天称为一轮。在一轮中,无论谁先谁后,完成的总工作量都相同。
所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。
由最后一轮完成的工作量相同,得到。
练习21.甲、乙二人同时开始加工一批零件,每人加工零件总数的一半。甲完成。
有多少个?需的时间相等。问:甲、乙单独做各需多少天?
3.加工一批零件,王师傅先做6时李师傅再做12时可完成,王师傅先做8时李师傅再做9时也可完成。现在王师傅先做2时,剩下的两人合做,还需要多少小时?
独修各需几天?
5.蓄水池有甲、乙、丙三个进水管,甲、乙、丙管单独灌满一池水依次需要10,12,15时。上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满。
问:甲管在何时被关闭?
6.单独完成某项工作,甲需9时,乙需12时。如果按照甲、乙、甲、乙、……的顺序轮流工作,每次1时,那么完成这项工作需要多长时间?
7.一项工程,乙单独干要17天完成。如果第一天甲干,第二天乙干,这样交替轮流干,那么恰好用整天数完成;如果第一天乙干,第二天甲干,这样交替轮流干,那么比上次轮流的做法多用半天完工。
问:甲单独干需要几天?
答案与提示练习2
1.360个。
2.甲18天,乙12天。
3.7.2时。
解:由下页图知,王干2时等于李干3时,所以单独干李需12+6÷2×3=21(时),王需21÷3×2=14(时)。所求为。
5.上午9时。
6.10时15分。
7.8.5天。
解:如果两人轮流做完的天数是偶数,那么不论甲先还是乙先,两种轮流做的方式完成的天数必定相同(见左下图)。
甲乙甲乙……甲乙甲乙甲乙……甲乙甲。
现在乙先比甲先要多用半天,所以甲先时,完成的天数一定是奇数,于是得到右上图,其中虚线左边的工作量相同,右边的工作量也相同,说明乙做1天等于甲做半天,所以乙做17天等于甲做8.5天。
小学六年级数学工程问题
工程问题 一 工程问题指的是与工程建造有关的数学问题。其实,这类题目的内容已不仅仅是工程方面的问题,也括行路 水管注水等许多内容。工程问题是分数应用题的特例。但它同整数应用题中的工程问题一样,同样是研究工作效率 工作时间 工作总量三者之间的关系。所不同的是在整数应用题中的工程问题,工作总量 工作效率...
六年级数学工程问题
六年级测试题。5.一份稿件甲先单独抄写5小时完成了,乙接着抄写6小时完成了余下的,最后两人再合抄还要几小时完成?6.一件工作,甲 乙合做12天完成。若甲先做3天,再由乙做8天一共完成了。如果甲单独做几天完成?7.有一公路单独修完,甲要10天,乙要15天,丙要12天。现让三队合修,其间甲撤到另一工地,...
六年级数学工程问题
例题1。一项工程,甲 乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的,乙队单独完成全部工程需要几天?思路导航 此题已知甲 乙两队的工作效率和是,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用 组合法 将甲队独做5天,乙队独做3天,组合成甲 乙两队合作了3天后,甲队...