(2017 年人教版)
知识点概要:
第一单元负数
第二单元百分数(二)
第三单元圆柱和圆锥第四单元比例
第五单元数学广角-鸽巢问题
第六单元整理和复习
以下为详细内容
第一单元负数
1、负数:负数是数学术语,指小于 0 的实数,如-3。 任何正数前加上负号都等于负数。在数轴线上,负数都在 0 的左侧,所有的负数都比自然数。
小。负数用负号“-”标记,如-2,-5.33,-45,-0.6 等。
2、正数:大于 0 的数叫正数(不包括 0)。 若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。 正数有无数个,其中分正整数,正分数和正无理数。
3、正数的几何意义:数轴上 0 右边的数叫做正数。
既不是整数,也不是负数。
5、数轴:规定了原点,正方向和单位长度的直线叫数轴。 所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。
6、数轴的三要素:原点、单位长度、正方向
第二单元百分数(二)
1、折扣:商品按原定**的百分之几**,叫做折扣。通称“打折”。 几折就表示十分之几,也就是百分之几十。例如八折= =80﹪,六折五=0.65=65﹪。
2、成数:农业收成,经常用“成数”来表示。现广泛应用于表示各行各业的发展变化情况。 一成是十分之一,也就是 10%。三成五就是十分之三点五,也就是 35%。
3、税率 1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
2)纳税的意义:税收是国家财政收入的主要**之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
3)应纳税额:缴纳的税款叫做应纳税额。
4)税率:应纳税额与各种收入的比率叫做税率。
5)应纳税额的计算方法:应纳税额 = 总收入 × 税率
4、利率 1)存款分为活期、整存整取和零存整取等方法。
2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
3)本金:存入银行的钱叫做本金。
4)利息:取款时银行多支付的钱叫做利息。
5)利率:利息与本金的比值叫做利率。
6)利息的计算公式:利息=本金×利率×存期
7)注意: 如要上利息税(国债和教育储藏的利息不纳税),则: 税后利息=利息-利息的应纳税额或: 税后利息=利息-利息×利息税率或: 税后利息=利息×(1-利息税率)
第三单元圆柱和圆锥
1、圆柱:以矩形的一边为轴,旋转一周所围成的立体图形,叫圆柱。如蜡烛、石柱、易拉罐等。
圆柱由 3 个面围成。圆柱的上、下两个面叫做底面;圆柱周围的面(上下底面除外),叫做侧面;圆柱的两个底面之间的距离叫做高。
2、圆柱的表面积与侧面积圆柱的表面积=圆柱的侧面积+两个底面的面积 s 表=s 侧+2s 底=2πr(h+r) 圆柱的侧面积=底面的周长×高 s 侧=ch(注:c 为πd)
3、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱的体积=底面积×高v=sh 或v=πrh;
4、圆锥:以直角三角形边为轴,旋转一周所围成的立体图形,叫圆锥。 生活中经常出现的圆锥有:沙堆、漏斗、帽子等。
5、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。 一个圆锥的体积等于与它等底等高的圆柱的体积的 。 圆锥体积公式:v= sh
s 是圆锥的底面积,h 是圆锥的高,r 是圆锥的底面半径 6、圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。
圆锥的表面积由侧面积和底面积两部分组成。
n 1 ns=πr( )r或 αr+πr(此 n 为角度制,α为弧度制。
7、圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。 体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。 底面积和高不相等的圆柱圆锥不相等。
第四单元比例。
1、比的意义
1)像 2.4:1.6=60:40 这样表示两个比相等的式子叫做比例。
2)两个数相除又叫做两个数的比。“:是比号,读作“比”。
3)组成比例的四个数,叫做比例的项。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
4)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
5)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
6)比的后项不能是零。
7)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。 2、比的性质:比的前项和后项同时乘上或者除以相同的数(0 除外),比值不变,这叫做比的基本性质。
3、求比值和化简比: 求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
化简比:根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
4、比例尺:图上距离:实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
5、按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
6、比例的意义:比例的意义表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。 7、比例的性质:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
8、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。
9、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做。
正比例关系。
用字母表示y/ x =k(一定)
10、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 用字母表示x×y=k(一定)
第五单元数学广角-鸽巢问题
1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用。
什么是鸽巣原理? 先从一个简单的例子入手, 把 3 个苹果放在 2 个盒子里, 共有四种不同的放法, 如下表:
放法盒子1 盒子2
无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。 这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。 类似的, 如果有5 只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2 只或 2 只以上的鸽。
子。 如果有 6 封信, 任意投入 5 个信箱里, 那么一定有一个信箱至少有 2 封信。 我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱” 看作鸽巣, 可以得到鸽巣原理最简单的表达形式
利用公式进行解题
物体个数÷鸽巣个数=商……余数至少个数=商+1
2、摸 2 个同色球计算方法
要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多 1物体数=颜色数×(至少数-1)+1
极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球, 都能保证一定有两个球是同色的。
公式: 两种颜色:2+1=3(个) 三种颜色:3+1=4(个) 四种颜色:4+1=5(个)
3、鸽巢原理也叫抽屉原理抽屉原理:把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。这种现象叫着抽屉原理。
第六单元整理和复习。
1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。 2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与**,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。
5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
小学数学六年级下册知识点
导读 六年级的学生除了学习新的知识还要做好复习和衔接的学习,现在同学们进行的是六年级下册的学习,为了更迅速的学习好这一册的知识,现将小学数学下册知识汇总,包括各章各小结的概念 总结等等。六年级第一章数和数的运算 整数概念 六年级第一章数和数的运算 小数概念 六年级第一章数和数的运算 分数概念 六年级...
六年级下册知识点
人教版六年级下册数学知识点。第一单元负数。1 负数 任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号 标记,如 2,5.33,45,0.6等。16 读作十六摄氏度,表示零上16 16 读作负十六摄氏度,表示零下16 如果2000表示存入2000元,那么 ...
六年级下册知识点
一 负数。大于0的数叫正数 小于0的数叫负数。正数和负数可以用来表示两种相反意义的量。0既不是正数也不是负数,它是正数与负数的分界点。正数 负数的读法和写法 正数的读法和写法与以前所学的数的读法和写法基本相同,写正数时,前面可以加上 号,通常省略不写。但是读正数时,带 号的一定要读出 正 字,省略 ...