六年级下册知识点

发布 2020-08-03 12:29:28 阅读 7987

人教版六年级下册数学知识点。

第一单元负数。

1 .负数:任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号“-”标记,如-2,-5.33,-45,-0.6等。

16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃。

如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。

2.正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数。

若一个数大于零(>0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中有正整数,正分数和正小数。

3. (0)既不是正数,也不是负数,它是正、负数的界限。正数都大于0,负数都小于0,正数大于一切负数。

4.数轴:规定了原点,正方向和单位长度的直线叫数轴。

所有的数都可以用数轴上的点来表示。也可以用数轴来比较两个数的大小。

5.数轴的三要素:原点、单位长度、正方向。

在数轴上表示的两个数,正方向的数大于负方向的数。

在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。

如:-8<-6。

第二单元圆柱和圆锥。

1、圆柱的特征:

1)底面的特征:圆柱的底面是完全相的两个圆。

2)侧面的特征:圆柱的侧面是一个曲面。

3)高的特征:圆柱有无数条高。

圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

2、圆柱的高:两个底面之间的距离叫做高。

3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。

4、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:s侧=ch或 s侧= 2πr×h

圆柱的表面积=圆柱的侧面积+底面积×2

5、圆往的表面积:圆柱的表面积=侧面积+2×底面积。

s表=s侧+2s底或s表=2πr×h+2π

6、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

圆柱的体积=圆柱的底面积×高 v=sh或 v= πh

常见的解决问题:①、压路机压过路面面积(求侧面积);②压路机压过路面长度(求底面周长);③水桶铁皮(求侧面积和一个底面积);④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

7、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。

8、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。

9、圆锥的特征:

1)底面的特征:圆锥的底面一个圆。圆锥只有一个底面。

2)侧面的特征:圆锥的侧面是一个曲面。

10、圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。圆锥有无数条母线。

11、圆锥的侧面:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。

12、圆锥的侧面积=底面的周长(展开图弧长)×母线÷2;

13、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。

根据圆柱体积公式v=sh(v=rrπh),得出圆锥体积公式:v=1/3sh

14、圆柱与圆锥的关系:

1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

v锥= sh 或 v锥=π h÷3

2)体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。

3)体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。

15、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

第三单元比例。

1、比的意义。

1)两个数相除又叫做两个数的比。

2)“:是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

3)与除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

5)比的后项不能是零。

6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

7、比和比例的区别。

1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

2)比有基本性质,它是化简比的依据;比例出有基本性质,它是解比例的依据。

7、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示 y/x=k(一定)

例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④、y=5x,y和x成正比例,因为:y÷x=5(一定)。

⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示 x×y=k(一定)

例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

③、长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

÷x=y,x和y成反比例,因为:x×y=40(一定)。

⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

10、判断两种量成正比例还是成反比例的方法:

关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分数。

1)数值比例尺和线段比例尺。

2)缩小比例尺和放大比例尺。

12、图上距离:实际距离=比例尺。

实际距离×比例尺 =图上距离图上距离÷比例尺 =实际距离。

图上距离:实际距离=比例尺;

例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

实际距离=图上距离÷比例尺;

例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

图上距离=实际距离×比例尺;

例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

13、应用比例尺画图。

1)写出图的名称、

2)确定比例尺;

3)根据比例尺求出图上距离;

4)画图(画出单位长度)

5)标出实际距离,写清地点名称。

6)标出比例尺。

14、图形的放大与缩小:形状相同,大小不同。(相似图形)

15、用比例解决问题:

根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

第四单元统计。

1、统计表:把统计数据填写在一定格式的**内,用来反映情况、说明问题,这样的**就叫做统计表。

2、统计种类:

单式统计表:只含有一个项目的统计表。

复式统计表:含有两个或两个以上统计项目的统计表。

百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。

3、统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。

4、条形统计图:很容易看出各种数量的多少。注意:

画条形统计图时,直条的宽窄必须相同。复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

5、折线统计图:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:

折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。

6、扇形统计图。

1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

2)优点:很清楚地表示出各部分同总数之间的关系。

3)制扇形统计图的一般步骤:

a)先算出各部分数量占总量的百分之几。

b)再算出表示各部分数量的扇形的圆心角度数。c)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。

d)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

六年级下册知识点

一 负数。大于0的数叫正数 小于0的数叫负数。正数和负数可以用来表示两种相反意义的量。0既不是正数也不是负数,它是正数与负数的分界点。正数 负数的读法和写法 正数的读法和写法与以前所学的数的读法和写法基本相同,写正数时,前面可以加上 号,通常省略不写。但是读正数时,带 号的一定要读出 正 字,省略 ...

六年级下册知识点

一。1 在文中恰当地引用一些诗句 俗语,可以凝练地表达作者的意思,突出主题,增加说明力。如 田家少闲月,五月人倍忙 拳不离手,曲不离口 2 名言名句。a 青山遮不住,毕竟东流去辛弃疾。b 夕阳无阻好,只是近黄昏。感概时间不再李商隐。c 沉舟侧畔千帆过,病树前头万木春。感概新事物取代旧事物 刘禹锡。d...

六年级下册知识点

既不是正数,也不是负数,0是自然数 2 所有的负数都在0的左边,负数都小于0,负数越接近越大 所有的正数都在0的右边,正数都大于0,正数越接近越小 正数 0 负数。3 圆柱的底面都是圆,而且大小一样 侧面是一个曲面 有无数条高。4 一面长方形旗面转动起来是一个圆柱 一面三角形旗面转动起来是一个圆锥。...