一、主要问题及解答。
一)有关“负数”教学的问题。
1. 为什么将“负数”编排在六年级下册。
负数”过去是安排在中学进行教学的。现在考虑到负数在生活中具有广泛的应用,学生在日常生活中已经接触到一些负数,例如,收入与支出、气温的零上和零下、海平面以上与海平面以下、相反方向的距离等,具备了初步认识负数的基础。因此,《标准》将其提前到第二学段开始教学。
人教版小学数学课程标准实验教材将负数的认识编排在六年级下册,主要基于以下两点考虑:第一,《标准》对第二学段负数的要求是“学生能够在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题”,不要求负数参与运算。将该内容编排在六年级下册,避免了引入负数后,在学习运算过程中可能会产生负数的情况。
第二,有利于中小学数学的衔接,为学生进入初中后即将要学习的有理数的意义和运算奠定一定的基础,加强中小学数学教学内容的联系。
2. 认识负数的教学中应注意的问题。
1)结合具体生活情境,加深对正负数的认识。
负数”概念对小学生来讲比较抽象,为了让学生能够更好地认识负数的意义。教学时,可以先结合具体生活情境,让学生充分体会到:负数的出现,是生活中表示两种相反意义的量的需要。
然后,运用大量实例,例如存入与支出、高于海平面与低于海平面等让学生直观形象地理解“正负数是表示相反意义的量”,加深学生对正负数的认识。
2)注意正确地理解正号和负号的含义。
数学符号是一种高度抽象化、概括化和形式化的数学语言,而小学生由于仍处于具体形象的思维水平,在首次接触新的数学符号时往往不能很好地理解其实质,从而产生一些不正确的认识。例如,“正数前面的正号”“负数前面的负号”等不科学的表述。这就要求在本单元的教学中,老师应重视引导学生对“+”的分析,帮助学生透过形式,切实理解正号、负号的本质意义。
3. 数的大小比较中,是否需要紧密联系具体情境进行比较。
教学数的大小比较时,教材安排了两道例题。这两道例题均创设了一定的情境:例3是学生向相反方向运动的情境,例4是在数轴上表示出未来一周每天的最低气温的情境。
那么,进行数的大小比较时是否仍然需要联系具体情境呢?以例4为例,如果将温度的“高”“低”直接对应于数的“大”“小”看似颇为牵强,也缺乏推论的依据。其次,即使学生借助温度从低到高的排列顺序能够进行数的大小比较了,可是如果情境变换为“盈亏”或“上车与下车人数”的问题,学生可能很难将已有的经验和结论直接迁移过来进行数的大小比较。
可见,借助情境不利于学生从更为一般化的方法和角度比较数的大小。因此,教材中情境设置的主要目的是为了引出数轴以及在数轴上表示出各个数。进行数的大小比较时,则应该脱离具体的情境,把数轴上的点和抽象的正负数对应起来,通过观察数轴上正负数的排列顺序,总结数的大小比较规律。
二)六年级学习圆柱、圆锥比一年级有哪些发展。
对于圆柱和圆锥,学生在一年级已经能够直观辨认,此时学习圆柱和圆锥,学生将主要从以下三方面进一步加深认识:
第一,从“静态”到“动态”,即由平面图形经过旋转形成几何体。这不仅是对几何体形成过程的学习,同时让学生体会面和体的关系也是发展空间观念的重要途径,这也是教材的意图。(即新世纪版教材将本课的题目定为“面的旋转”的原因)
第二,从“整体辨认”到“局部特征刻画”。学生已经认识了长方形、正方形、平行四边形、三角形、梯形、圆等平面图形和长方体、正方体等立体图形,这里是在以前研究长方体、正方体特征的基础上,研究圆柱和圆锥的特征。同时,对圆柱和圆锥的侧面的认识,使学生对面的认识从平面过渡到曲面,这是认识上的再一次上升。
第三,从观察圆柱、圆锥的实物到认识它们画在平面上的“直观图”。学生在认识直观图中会存在着困难,教师要加以指导。
三)在“圆柱的体积”和“圆锥的体积”的教学目标中,建议要让学生经历“类比猜想—验证说明”来探索体积的计算方法的过程,这样要求是基于什么考虑?
我们以圆柱体积的内容学习为例。在探索圆柱体积计算方法的内容时,建议引导学生经历“类比猜想—验证说明”的探索过程,体会类比、转化等数学思想。
所谓类比,就是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。运用类比的关键是寻找一个合适的类比对象。圆柱和圆锥的体积与已学习过的长方体和正方体的体积存在诸多相似点,为进行类比提供了可能在学习长方体和正方体的体积时,学生已经初步理解了体积和容积的含义,掌握了长方体和正方体的体积计算方法,这些知识都是学习圆柱体积的基础,特别是长方体和正方体的体积计算公式“底面积乘高”对探索圆柱的体积计算方法有正迁移作用。
这就使得圆柱和圆锥的体积学习有了合适的类比对象或者说类比的基础。
教学时可以先呈现“类比猜想”的过程,由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积乘高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积乘高”。在形成猜想后,再引导学生“验证说明”自己的猜想,“验证说明”的方法可以有如:
一是用硬币堆成一堆,用堆的过程来说明“底面积乘高”计算圆柱体积的道理,这实际上是“积分”思想的渗透;另外一种方法是“转化”思想的渗透,即把圆柱通过“切、拼”转化为长方体,再根据长方体体积的计算方法推导出圆柱体积的计算方法。
让学生经历“类比猜想—验证说明”来探索体积计算方法的过程,主要是由于这种过程的重要性。数学发现通常都是在类比、归纳等方法进行探索的基础上,获得对有关问题的结论或解决方法的猜想,然后再设法证明或否定猜想,进而达到解决问题的目的。当然,通过合情推理得到的猜想还需要进一步证明。
在小学阶段不要求给出严格的证明,只要学生能够从不同角度说明其合理性即可,可以说是验证说明。
四)正确处理好正反比例意义的教学。
我们生活在一个“变化”的世界中,生活中存在大量互相依赖的量。从数学的角度研究变量和变量之间的关系,将有助于人们更好地认识现实世界、**未来。同时,研究现实世界中的变化规律,也使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。
我们知道,函数是研究现实世界变量之间关系的一个重要模型,函数的学习一直是中学阶段数学学习的一个重要内容。而国际数学课程发展的趋势表明,对变量之间关系的探索、描述应从小学阶段非正式地开始,早期对函数的丰富经历是十分重要的。其实,以前学习的探索数和形的变化规律、字母表示数等,已经为学生积累了研究变量之间关系的经验。
而本单元的正比例、反比例本身就是两个重要的函数。函数是刻画变量之间相互关系的重要模型,多种研究表明,学生体会、理解函数思想需要丰富的情境,应使他们对函数的多种表示——数值表示(**)、图像表示、解析表示(关系式)有丰富的经历。学生在这些情境和经历中,感受到生活中存在着许多变量,感受到有的变量之间存在一定的关系,一个变量随另一个变量的变化而变化。
五)“抽屉原理”教学中应注意的问题。
1. 例1教学中适当渗透“平均分”的思想。
例1介绍了一类较简单的抽屉原理。教材编排了两种解释方法,即枚举法和假设法。在引导学生理解假设法时,教师应帮助学生明确“将4枝铅笔放在3个文具盒中,为什么可以先考虑每个文具盒放1枝铅笔的情况?
”弄清楚该问题,也就帮助学生体会到假设法的基本思想——尽可能地平均分。这样,不仅可以帮助学生体会两种方法中假设法是更为一般、更为快捷的方法,而且也为学生运用假设法“证明”更复杂的抽屉问题奠定了基础。
2.例2教学中要让学生正确理解“余数”的问题。
教材在例2的编排中是运用有余数除法的形式表达出假设法的核心思路,即5÷2=2……1。学生借助算式能够很快理解该“证明”过程:5本书放进2个抽屉,每个抽屉放进2本,还剩1本。
把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。但由于该除法算式的余数正好是1,很容易让学生将“某个抽屉至少有书的本数”是商加1错误地等同于商加余数。教学中,教师可结合余数不是1的情况,如例2后面的“做一做”,在对比、辨析中帮助学生更好地理解“抽屉原理”的实质。
3.例3教学中引导学生尽可能地理解一般性的方法。
在解决实际问题时,将“具体问题”和“抽屉问题”建立起联系对小学生而言具有一定的难度。学生在思考这些问题的时候,一开始可能很难找到切入点。因此,例3的编排中通过学生的对话,提示我们在教学中可以通过先猜测再验证的方法来解决问题。
但这样编排的主要目的是让学生在猜测、验证的过程中逐步让学生认识到该问题属于“抽屉原理”可以解决的范畴,并在“摸球问题”与“抽屉问题”之间建立联系。教学中随着对该问题认识地逐步深入,应引导学生理解猜测、验证并不具有普适性,解决相关问题时应当尽可能地运用更为一般的方法,找出问题中什么是“待分的东西”,什么是“抽屉”,“抽屉”有几个,再应用“抽屉原理”的一般化模型推理解决。
六)习题中的问题。
线段比例尺是否应固定的理解为图上1厘米表示实际距离多少千米呢?
线段比例尺一般是指图上1厘米的线段表示的实际距离。通常,绘图时会画一条1厘米的线段来表示,这么表示给测量和计算带来了方便,所以教材中涉及到的线段比例尺的单位长度基本上是1厘米。但有时受客观条件的限制,一些简单示意图所画线段的单位长度不一定是1厘米。
例如,教材练习二十一(第107页)第2题的示意图,如果按1:5000的比例尺来绘图,教材的版面很难达到要求。所以根据具体情况,教材用图上0.
4厘米表示实际50米的距离也是可以的,不存在科学性的错误。
七)总复习的设计体现了什么样的意图?
按课程标准的要求,教材把总复习的内容划分为“数与代数”“空间与图形”“统计与可能性”三个领域,同时,教材还设计了回顾解决问题策略的内容。每一部分内容的呈现实质分为“回顾与交流”“巩固与应用”两个方面。每一部分的“回顾与交流”主要是对重点知识及学习方法的梳理;“巩固与应用”主要是通过练习和应用,一方面巩固所学的知识,澄清学习中的困难,另一方面提升学生分析问题、解决问题的能力。
解决问题的策略主要是梳理学生在以前的学习过程中用到的解决问题的策略,如列表、画图、猜想与尝试、从特例开始寻找规律等。
人教版小学数学六年级下册教材解说
潜心研读追求高效。尊敬的各位评委 老师们 大家好!今天很高兴和大家一起交流 分享。我交流的题目是 潜心研读追求高效 追求高效课堂是每个教师的目标,而课堂高效的前提是对教材的准确把握。只有准确把握课标,正确领悟编者意图,才能真正实现高效课堂。今天,我研说的内容是人教版六年级数学下册,六年级数学下册是小...
人教版小学数学六年级下册教材分析
乌石浦小学陈正玉。各位老师 下午好!首先感谢进修学校给这样的机会,与在座的老师做关于 六下数学教材分析 在接下来的交流中若有不足之处,还请老师们给予批评指正!谢谢!本册教材由负数 圆柱与圆锥 比例 统计 数学广角 整理与复习等六个单元组成。有关各部分的教学内容 编写特点 教学要求和教学建议,在教师用...
人教版小学数学六年级下册教材分析
第一部分既有 圆柱与圆锥 比例 统计 这些传统教学内容,又增加了一些新的教学内容 如 负数 和 数学广角 中的抽屉原理。并且在传统教学内容中增加了一些新的成分,如 圆柱与圆锥 中旋转长方形形成圆柱,旋转三角形形成圆锥 比例 中正比例关系图像的绘制与应用 图形的放大与缩小 统计 中对由于数据不当或绘制...