2023年普通高等学校招生全国统一考试数学ⅱ(附加题)b.[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵a的逆矩阵,求矩阵a的特征值.
c.[选修4 - 4:坐标系与参数方程](本小题满分10分)在极坐标中,已知圆c经过点,圆心为直线与极轴的交点,求圆c的极坐标方程.
必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)
设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.
(1)求概率;
(2)求的分布列,并求其数学期望.
23.(本小题满分10分)
设集合,.记为同时满足下列条件的集合a的个数:
;②若,则;③若,则.
1)求;2)求的解析式(用n表示).
2019江苏高考数学试卷
1 样本数据x1 x2 xn的方差s2 xi 2,其中。2 2 直棱柱的侧面积s ch 其中c为底面积,h 为高。3 棱柱的体积v sh 其中s为底面积,h 为高。一。填空题 本大题共14小题,每小题5分,共计70分,1 已知集合则。2 函数的单调增区间是。3 设复数i满足 i是虚数单位 则的实部是...
2023年江苏高考数学试卷
二 解答题 本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明 证明或演算步骤。15.本小题满分14分 在平面直角坐标系中,o为坐标原点,三点满足。1 求证 三点共线 2 已知的最小值为,求的值。16.本小题满分14分 已知直角梯形中,过作,垂足为,分别为的中点,现将沿折叠,...
2023年江苏高考数学试卷评析
谢谢你的观赏。江苏省高考数学评卷专家组。2011年高考江苏数学试卷延续前三年新课程高考方案的基本思想,试题的形式稳定,双基并重,能力立意,知识面宽,难易适度,梯次递增,区分明显,有利选拔,不同层次的考生可以在自己相应水平上获得充分的成就感。卷 的填空题着重考查基础知识和基本技能,同时体现对数学能力不...