2023年考研数学线性代数重点内容和典型题型分析

发布 2020-02-15 21:17:28 阅读 3816

2023年的考试大纲已经出炉,11年大纲概率部分和10年完全没有区别,所以考生在复习的时候可以按照既定计划进行复习即可。

概率与数理统计这门课程从试卷本身的难度的话,在三门课程中应该算最低的,但是从每年得分的角度来说,这门课程是三门课中得分率最低的,由于它的概念比较多,式子比较复杂,尤其是统计部分,很多同学在初学的时候都会被吓住,有的会选择放弃学概率。其实是非常不明智的,因为我总结这门课的最大特点是,题型比较单一,解题手法也比较单一,比如大题基本上就围绕在随机变量函数的分布,随机变量的数字特征,参数的矩估计和最大似然估计这几块。这在《全国硕士研究生入学统一考试数学120种常考题型精讲》中重点介绍了相关题型,并且给出了独特和详细的求解步骤,考生认真学习后,必能轻松过关。

这门课程,很多同学觉得难,难在两点,一是古典概率,那块儿的计算一不小心就数错了,或者是不知道怎么来数数,其实这个大家放心,考研只会考简单的古典概率的计算,复杂的不会考,所以这部分可以很快通过;二是数理统计部分,这部分式子比较复杂,很多人学到这里就脑袋大,其实不用担心,这部分需要你真正去记忆的很少。

概率论与数理统计一共是八章,前五章是概率论,数学。

一、数学三都要考的。数理统计是后面三章,数学一和数学三是要考的,但是估计量的评选标准、置信区间和假设检验只有数学一要求。作为前面五章的概率论,我简单介绍一下。

第一章随机事件和概率,是后续各章的基础。它的重点内容主要是事件的关系和运算,古典概型和几何概型,加法公式、减法公式、乘法公式、全概公式和贝叶斯公式。第一章很少单独命题,经常是结合随机变量来考察的。

09年、10年连续两年利用古典概型结合随机变量已解答题的形式考察了。

第二章一维随机变量及其分布, 这部分的重点内容是常见分布,同时它是学习二维随机变量的基础。近几年考察一维随机变量的题目相对减少,更多的是考察二维随机变量的有关题目。

第三章二维随机变量,是考试的重点之重点。它的重点内容是随机变量函数的分布,随机变量的独立性,有关随机变量的联合分布、边缘分布和条件分布之间的关系。这在《2023年全国硕士研究生入学统一考试数学考试大纲配套强化指导》中详细阐述了常考题型的解题步骤,帮**生准确处理相关题目。

常见分布的重点在均匀分布,这方面是经常命题的。因此,作为这章来综合题相对多一些。

第四章随机变量的数字特征,这里面主要牵扯到一些重点的概念,如均值方差等,重点内容是讨论随机变量的相关性和独立性之间的关系。这也是重点章。每年必须考的一章。

第五章有三个内容,分别是切比雪夫不等式、大数定律和中心极限定理。这不是重点章,考的机会也比较少,但至少把这三个概念要复习一下。

这是概率论的前五章,重点章是。

三、四章。数理统计另外三章,那就是第六章基本概念、第七章参数估计、第八章是假设检验。重点是第七章参数估计。

第六章的基本概念目前考得比较多的。作为第七章的有三个内容,分别是点估计、区间估计和估计量的评选标准。考得比较多的有关点估计的两种方法,分别是矩法和最大似然法。

估计量的评选标准、置信区间和假设检验只有数一做要求,估计量的第一个评选标准无偏性是考试的重点,它结合数字特征经常命题,数学一的同学还是要重视的。置信区间和假设检验的考试频率是非常低的,尤其是假设检验,在2023年数学仅考过一道题,后来就没有考过,所谓第八章不作为重点。

考生在复习的时候要全面复习、重点突出。整个概率论可以说一句话,里面没有任何技巧,只要把基本概念、基本方法掌握住的话,肯定会把这部分题答好。但目前同学反映比较多的概率论和数理统计得分比较低,这是由于概率论和数理统计,与微积分、线性代数的学科特点不一样,它是一种不确定的数学,因此在复习的时候是把基本概念复习好,掌握最基本有关的方法。

我正在玩搜狐微博,快来“关注”我,了解我的最新动态吧。

2019考研数学 线性代数重点分析

xx考研数学 线性代数重点分析。考研数学包括 线性代数 高等数学 概率论与数理统计,高等数学占考研数学的大部分比例,而线性代数所占的分值比例是22 线性代数知识点多 定理多 概念多 符号多 运算规律多,知识点之间的联系非常紧密。复习线性代数的时候,要对基本概念 基本定理 结论及其应用 各种运算规律及...

2023年线性代数考研重点复习一

题型一 数值型行列式的计算。例1 设多项式。则的根得个数为是 a 1 b 2 c 3 d 4 详解 利用行列式性质,计算出行列式是几次多项式,即可作出判别。若均为阶方阵,则 故有两个根,故应选 b 例2 四阶行列式的值等于。a b c d 解析 可直接展开计算,所以选 d 例3 计算行列式的值为。详...

2023年线性代数考研重点复习二

题型一 齐次方程组求解与解的结构判定。例1 求齐次方程组的基础解系 例2 设阶矩阵的伴随矩阵若是非齐次线性方程组的互不相等的解,则对应的齐次线性方程组的基础解系 a 不存在b 仅含一个非零解向量。c 含有两个线性无关的解向量。d 含有三个线性无关的解向量。详解 由定理 若是的解,则是对应齐次方程组的...