浙江省温州市育英学校2013-2014学年上学期期中考试。
七年级数学试卷(实验班)
温馨提示:1.本试卷共有23道小题,满分为100分,考试时间90分钟。
2.所有解答要求写在答题卷上,否则不给分。
一、选择题(共10小题,每小题3分,满分30分)
1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ▲
a.两点确定一条直线b.两点之间直线最短。
c.两点之间线段最短d.直线比曲线短。
2.尽管受到国际金融危机的影响,但我市经济依然保持了平稳增长。据统计,截止到今年4月底,我市金融机构存款余额约为1193亿元,用科学计数法应记为( ▲
a.元b. 元。
c.元d. 元。
3.的平方根是( ▲
a.4b.±4c.2d.±2
4. 已知则( ▲
a.2bcd.
5.钟表上2时25分时,时针与分针所成的角是。
a. 77.5 ° b. 77 °5′ c. 75° d. 76°
6. 若关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值为。
abcd.
7.方程的解是。
a. b. cd.
8.如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点b, 若∠abe=45°,∠gbh=30°,那么∠fbc的度数为( ▲
a.12° b.15° c.25° d.30°
9.如图,甲、乙两动点分别从正方形abcd的顶点a、c同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边( ▲
a.ab上 b.bc上 c.cd上 d.da上。
10. 如图,直线ab∥cd,∠efa=30°,∠fgh=90°,∠hmn=30°,∠cnp= 50°,则∠ghm的大小是( ▲
a.30° b.40°
c.50° d.60°
二、填空题(共8小题,每小题3分,满分24分)
11. 若与的和是单项式,则。
12. 在,,,0.575775777…(两个5之间依次多一个7),这六个数中,属于无理数的个数有 ▲ 个.
13.已知-1,是多项式,在计算时,小马虎同学把看成了b-a,结果得,则。
14.如图所示,数轴上表示的对应点分别为c、b,点c是ab的中点,则点a表示的数是。
15.将数84960精确到百位,得到的近似值可以表示为。
16.如图,把一张长方形的纸按图那样折叠后,b、d两点落在。
b′、d′点处,若得∠aob′=850, 则∠cgo的度数为。
17.已知α、β都是钝角,甲、乙、丙、丁四人计算的结果依次为°,其中有正确的结果,那么计算正确的人是。
18.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折。张强两次购物分别付款99元和252元。
如果张强一次性购买以上两次相同的商品,则应付款元.
三、解答题(第19题8分,第题各10分,第22题12分 ,第23题6分共46分)
19.如图,o是直线ab上一点,od平分∠aoc.
1)若∠aoc=70°,请求出∠aod和∠boc的度数.
2)若∠aod和∠doe互余,且∠aod=∠doe,求出∠aod和∠coe的度数.
20.计算、化简求值题:
1)解方程
2)先化简再求值:
已知,求代数式的值。
21.已知数轴上点a、b、c所表示的数分别是-3,+7,.
1)求线段ab的长;
2)若ac=4,点m、n分别是ab、ac的中点,求线段mn的长度.
22.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:
1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。
1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
2)如果工厂需要招聘n(0(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资。现要求新工人的数量多于熟练工,同时工厂每月支出的工资总额w(元)尽可能的少,那么工厂应招聘多少名新工人?
23.现有a根长度相同的火柴棒,按如图1摆放可摆成m个正方形,按如图2摆放时可摆成2n个正方形.
1)用含n的代数式表示m;
2)当这a根火柴棒还能摆成如图3所示的形状时,求a的最小值.
图1图2图3)
答题卷。一、 选择题(每小题3分,共30分)
二、填空(每空3分共24分)
三、解答题(第19题8分,第题各10分,第22题12分 ,第23题6分共46分)
19.如图,o是直线ab上一点,od平分∠aoc.
1)若∠aoc=70°,请求出∠aod和∠boc的度数.
2)若∠aod和∠doe互余,且∠aod=∠doe,求出∠aod和∠coe的度数.
20.计算、化简求值题:
1)解方程
2)先化简再求值:
已知,求代数式的值。
21.已知数轴上点a、b、c所表示的数分别是-3,+7,.
1)求线段ab的长;
2)若ac=4,点m、n分别是ab、ac的中点,求线段mn的长度.
22.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:
1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。
1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
2)如果工厂需要招聘n(0(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资。现要求新工人的数量多于熟练工,同时工厂每月支出的工资总额w(元)尽可能的少,那么工厂应招聘多少名新工人?
23.现有a根长度相同的火柴棒,按如图1摆放可摆成m个正方形,按如图2摆放时可摆成2n个正方形.
1)用含n的代数式表示m;
2)当这a根火柴棒还能摆成如图3所示的形状时,求a的最小值.
图1图2图3)
参***。一、选择题(共10小题,每小题3分,满分30分)
1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( c )
a.两点确定一条直线b.两点之间直线最短。
c.两点之间线段最短d.直线比曲线短。
2.尽管受到国际金融危机的影响,但我市经济依然保持了平稳增长。据统计,截止到今年4月底,我市金融机构存款余额约为1193亿元,用科学计数法应记为( b )
a.元b. 元。
c.元d. 元。
3.的平方根是( d )
a.4b.±4c.2d.±2
4. 已知则( d )
a.2bcd.
5.钟表上2时25分时,时针与分针所成的角是 ( a )
a. 77.5 ° b. 77 °5′ c. 75° d. 76°
6. 若关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值为 ( b )
abcd.
7.方程的解是( c )
a. b. cd.
8.如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点b,
若∠abe=45°,∠gbh=30°,那么∠fbc的度数为( b )
a.12° b.15° c.25° d.30°
9.如图,甲、乙两动点分别从正方形abcd的顶点a、c同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边( a )
学年七年级数学上学期期中试题
2014 2015学年度第一学期七年级数学期中考试。一 选择题 每小题3分,共30分 1.如果收入200元记作 200元,那么支出150元记作 a.150元 b.150元 c.50元 d.50元。2.有理数a b在数轴上的位置如图所示,那么下列式子中成立的是。a a b b ac ab 0 d 3....
七年级数学上学期期中试卷
a 1 30 吨 b 1 30 吨 c 30 吨 d 30 吨。16 下列各式中正确的是 a bc d 17 与下列哪一个是同类项 a abb.abc.2 d.m 18 数轴上的点a表示的数是 2,那么与点a相距5个单位长度的点表示的数是 a.5b.5 c.7d.7 或。19 根据右边流程图中的程序...
七年级数学上学期期中试卷
七年级数学上册第一月考试卷。一。填空题 3分 10 1.比的3倍与的立方的和少3的数,用代数式表示是。2.最大的负整数是 最小的自然数是 平方小于20的所有整数的和是。3.的相反数是绝对值是倒数是。4.近似数3.4万精确到位,它有个有效数字 用四舍五入法对10410保留两个有效数字,近似值约等于。5...