六.抽屉原理、奇偶性问题。
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。
再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。
以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保证有3副同色的。
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?
答案为21解:
每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法。
当有11人时,能保证至少有2人取得完全一样:
当有21人时,才能保证到少有3人取得完全一样。
3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
解:需要分情况讨论,因为无法确定其中黑球与白球的个数。
当黑球或白球其中没有大于或等于7个的,那么就是:
6*4+10+1=35(个)
如果黑球或白球其中有等于7个的,那么就是:
6*5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是:
如果黑球或白球其中有等于9个的,那么就是:
4.地上有四堆石子,石子数分别是如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)
不可能。因为总数为1+9+15+31=56
14是一个偶数。
而原来都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。
七.路程问题。
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米。
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案为两人跑一圈各要6分钟和12分钟。
解:600÷12=50,表示哥哥、弟弟的速度差。
600÷4=150,表示哥哥、弟弟的速度和。
50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数。
150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数。
600÷100=6分钟,表示跑的快者用的时间。
600/50=12分钟,表示跑得慢者用的时间。
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案为53秒。
算式是(140+125)÷(22-17)=53秒。
可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米。
300÷(5-4.4)=500秒,表示追及时间。
5×500=2500米,表示甲追到乙时所行的路程。
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
答案为22米/秒。
算式:1360÷(1360÷340+57)≈22米/秒。
关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。
解:由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。
从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完。
8. ab两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从ab两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达a地比甲到达b地要晚多少分钟?
答案:18分钟。
解:设全程为1,甲的速度为x乙的速度为y
列式40x+40y=1
x:y=5:4
得x=1/72 y=1/90
走完全程甲需72分钟,乙需90分钟。
故得解。9.甲乙两车同时从ab两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离b地的距离是ab全程的1/5。已知甲车在第一次相遇时行了120千米。ab两地相距多少千米?
答案是300千米。
解:通过画线段图可知,两个人第一次相遇时一共行了1个ab的路程,从开始到第二次相遇,一共又行了3个ab的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米。
从a地到b地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别ab两地同时出发相向而行,相遇时距ab两地中点2千米。如果二人分别至b地,a地后都立即折回。第二次相遇点第一次相遇点之间有()千米。
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
解:(1/6-1/8)÷2=1/48表示水速的分率。
2÷1/48=96千米表示总路程。
11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
解:相遇是已行了全程的七分之四表示甲乙的速度比是4:3
时间比为3:4
所以快车行全程的时间为8/4*3=6小时。
6*33=198千米。
12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时。已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
解:把路程看成1,得到时间系数。
去时时间系数:1/3÷12+2/3÷30
返回时间系数:3/5÷12+2/5÷30
两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时。
去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
人教新课标六年级数学下册竞赛试卷
人教新课标 六年级数学下册竞赛试卷。班级 姓名 得分 时间90分钟 一 计算。4.78.6 0.786 25十75 21.4 15 1997 二 按照规律填空。1.将自然数按下面的规律分组 1,2 3,4,5,6 7,8,9,10,11,12 13,14,15,16,17,18,19,20 第200...
人教新课标六年级上册数学圆的周长教案
课题 第。学习目标。单元第四课时。1 学会根据圆的周长求圆的直径 半径。2 培养逻辑推理能力。学习重点求圆的直径和半径。学习难点求圆的直径和半径。学法指导动手操作。知识回顾与准备。求出下面各圆的周长。1 圆的直径是2厘米,求圆的周长是多少?2 圆的半径是4厘米,求圆的周长是多少?2厘米。4厘米。已知...
人教新课标六年级上册数学圆的周长教案
圆的周长 教学设计教学目标 1 知识与技能目标 使学生直观认识圆的周长,知道圆的周长的含义,通过对圆周长的测量方法和圆周率的探索 圆的周长计算公式的推导等教学活动,培养学生观察 猜测 分析 抽象 概括 动手操作的能力和解决简单的实际问题的能力。2 过程与方法目标 通过摸一摸,动手操作,猜想验证等方法...