八下知识点汇总第十六章二次根式。
1、一般地,把形如((a≥0)的式子叫做二次根式,“”称为二次根号。
一个正数有两个平方根;在实数范围内,负数没有平方根。)
2、二次根式的性质:()a(a≥0),3、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面。
4、二次根式的乘法法则:×=a≥0,b≥0)
二次根式的乘法法则逆用: =a≥0,b≥0)
5、二次根式的除法法则: =a≥0,b>0)
二次根式的除法法规逆用: =a≥0,b>0)
6、最简二次根式:必须同时满足下列条件 ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式; ③分母中不含根式。
7、二次根式加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
10、同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
11、有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
第十七章勾股定理。
1、勾股定理 (命题1)如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2
要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:
1)已知直角三角形的两边求第三边。
在⊿abc中,∠c=90 ,则c= ,a= ,b=)
2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边
3)利用勾股定理可以证明线段平方关系的问题
2、勾股定理的逆定理 (直角三角形的判定) (命题2)如果三角形的三边长a、b、c,满足a2+b2=c2那么这个三角形是直角三角形。
要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:
1)首先确定最大边,不妨设最长边长为:c;
2)验证c与a+b是否具有相等关系,若a+b=c ,则△abc是以∠c为直角的直角三角形 (若c> a+b,则△abc是以∠c为钝角的钝角三角形;若c﹤a+b,则△abc为锐角三角形)。 定理中a+b=c只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a+ c = b ,那么以a,b,c为三边的三角形也是直角三角形,但是b为斜边)
3、命题2与命题1的题设、结论正好相反,这两个命题叫做互为逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
4、勾股定理与勾股定理逆定理的区别与联系
区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
5、常见的勾股定理三边的组合:
第十八章平行四边形。
四边形知识点:
一、 关系结构图:
二、知识点讲解:
1、平行四边形的性质(重点):
abcd是平行四边形。
2、平行四边形的判定(难点):
3、 矩形的性质:
因为abcd是矩形。
4)是轴对称图形,它有两条对称轴.
4、矩形的判定:
1)有一个角是直角的平行四边形;
2)有三个角是直角的四边形;
3)对角线相等的平行四边形;
4)对角线相等且互相平分的四边形.
5、菱形的性质:
因为abcd是菱形
6. 菱形的判定:
四边形abcd是菱形。
7、正方形的性质:
abcd是正方形
8. 正方形的判定:
四边形abcd是正方形。
9、两条平行线之间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。
10、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
11、三角形的中线: 三角形的一边中点与这边所对顶点的连线叫做三角形的中线。
12、三角形的中位线定理:三角形的中位线平行行三角形的第三边,并且等于第三边的一半。
第十九章一次函数。
函数。1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,y是因变量,y是x的函数。
*判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应。
3、自变量取值范围:一般的,一个函数的自变量允许取值的范围,叫做这个函数的自变量取值范围。
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式。
6、函数的图像(函数图像上的点一定符合函数表达式,符合函数表达式的点一定在函数图像上)
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
运用:求解析式中的参数、求函数解释式。
7、描点法画函数图形的一般步骤。
第一步:列表(表中给出一些自变量的值及其对应的函数值);
函数表达式为y=3x
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出**中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法。
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
1)一次函数
1、一次函数的定义。
一般地,形如(,是常数(其中k与b的形式较为灵活,但只要抓住函数基本形式,准确找到k与b,根据题意求的常数的取值范围),且)的函数,叫做一次函数,其中x是自变量。当时,一次函数,又叫做正比例函数。
一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
当,时,仍是一次函数.
当,时,它不是一次函数.
正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质。
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数。
注:正比例函数一般形式 y=kx (k不为零) k不为零 x指数为1 b取零。
当k>0时,直线y=kx经过。
三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过。
二、四象限,从左向右下降,即随x增大y反而减小.
3、一次函数及性质。
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数。当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数。
注:一次函数一般形式 y=kx+b (k不为零) k不为零x指数为1 b取任意实数。
倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴。
图像:4、一次函数y=kx+b的图象的画法。
在实际做题中只需要俩点就可以确定函数图像,一般我们令x=0求出y的值,再令y=0求出x的值。如图。
y=kx+b
解析:(两点确定一条直线,这两点我们0, b)
般确定在坐标轴上,因为x轴上所有坐。
标点的纵坐标为0即(x,0)y轴上所有点的。
横坐标为0即(0,y)这样作图既快又准确 (-b/k , 0 )
5、正比例函数与一次函数之间的关系。
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移。
八年级下册知识汇总
生物进化的规律 由简单到复杂,由低等到高等,由水中生活到陆上生活。生物进化的原因 自然选择达尔文 通过剧烈的斗争适者生存,不适者淘汰。物种起源 人类的起源 人类和类人猿的共同祖先是森林古猿。人类祖先的直立行走,是从古猿进化到恩德具有决定意义的一步。人类是由古猿进化进化而来的。第七单元环境与健康。第2...
八年级物理知识汇总
科学之旅。一 0.1 1 现象 水会重新沸腾。原因 当向瓶底浇冷水时,瓶内气体温度突然降低,气压减小,瓶内液面上方气压减小,导致沸点降低,所以水会重新沸腾起来。二 0.1 2 原因 声音是由物体振动产生。三 0.1 4 现象 乒乓球不下落。原因 它上方气体流速大,压强小。四 0.1 7 换用较大的。...
八年级物理下册知识点汇总
力。考点1 力与力的示意图。1 正确理解力。1 定义 力是的作用。力不能脱离物体而存在,力的作用是 的,力总是 出现的。力的符号是 2 单位 力的单位是 3 作用效果 一是力可以改变物体的二是力可以使物体发生 并且这些效果都要受到力的和 三个要素的影响。2 力的示意图。1 力的三要素在力的示意图中的...