目标函数为
3. crisp公司制造四种类型的小型飞机:ar1型(具有一个座位的飞机)、ar2型(具有两个座位的飞机)、ar4型(具有四个座位的飞机)以及ar6型(具有六个座位的飞机)。
ar1和ar2一般由私人飞行员购买,而ar4和ar6一般由公司购买,以便加强公司的飞行编队。为了提高安全性,联邦航空局(对小型飞机的制造做出了许多规定。一般的联邦航空局制造规章和检测是基于一个月进度表进行的,因此小型飞机的制造是以月为单位进行的。
表1说明了crisp公司的有关飞机制造的重要信息。
表1crisp公司下个月可以得到的生产经理的总数是60人。该公司的飞机制造设施可以同时在任何给定的时间生产多达9架飞机。因此,下一个月可以得到的制造天数是270天(9*30,每月按30天计算)。
jonathan kuring是该公司飞机制造管理的主任,他想要确定下个月的生产计划安排,以便使盈利贡献最大化。
解:设表示下个月生产ar1型飞机的数目,表示ar2型,表示ar4型, 表示ar6型(1分)
目标函数:(2分)
约束条件:
为整数(1分)
4.永辉食品厂在第一车间用1单位原料n可加工3单位产品a及2单位产品b,产品a可以按单位售价8元**,也可以在第二车间继续加工,单位生产费用要增加6元,加工后单位售价增加9元。产品b可以按单位售价7元**,也可以在第三车间继续加工,单位生产费用要增加4元,加工后单位售价可增加6元。
原料n的单位购入价为2元,上述生产费用不包括工资在内。
3个车间每月最多有20万工时,每工时工资0.5元,每加工1单位n需要1.5工时,若a继续加工,每单位需3工时,如b继续加工,每单位需2工时。原料n每月最多能得到10万单位。
问如何安排生产,使工厂获利最大?
解:设为产品a的售出量;为a在第二车间加工后的售出量;表示产品b的售出量;表示b在第三车间加工后的售出量;为第一车间所用原材料的数量,(2分)
则目标函数为: (3分)
约束条件: (各1分)
建模练习题 运筹学
1.某公司生产的产品a,b,c和d都要经过下列工序 刨 立铣 钻孔和装配。已知每单位产品所需工时及本月四道工序可用生产时间如下表所示 又知四种产品对利润贡献及本月最少销售需要单位如下 问该公司该如何安排生产使利润收入为最大?只需建立模型 解 设生产四种产品分别x1,x2,x3,x4单位。则应满足的目...
运筹学建模练习题
运筹学上机练习题。1 一 公司专门经营某种杂粮的批发业务。公司现有库容5000担的仓库。1月1日,公司拥有库存1000担杂粮,并有资金20000元,估计第一季度杂粮 如表所示。如买进的杂粮当月到货,但需到下月才能卖出,且规定 货到付款 公司希望本季末库存2000担,问应采取什么样的买进卖出的策略使3...
运筹学练习题
一 三种产品经过三种不同的工序加工,每件产品所需的加工时间 分钟 每天各工序的加工能力 分钟 和销售单位产品利润如下表 1 建立此问题的线性规划模型。2 求最优解。二 已知线性规划问题 写出其对偶问题。三 在下列不平衡的运输问题中,假定任何一个发点的物资没运出时都要支出存储费用,且已知三个发点的单位...