3、重课本,多变式。
纵观近几年的中考数学试题,我们不难发现,相当数量的基本题是课本上的例题、习题的直接引用或稍作改编而成的,即使综合题也是基础知识的组合、加工和发展,充分体现出教材的基础功能。因此,在中考复习中,充分发挥教材的作用,对典型的例习题加以重视。对于较差的学生就专门训练基础题,很多这部分学生只做填空、选择题,那么就要让这部分人对于这部分题加强练习,巩固基础。
4、重细节,多反思。
数学成绩再好的同学,也难免会粗心,但粗心的背后是有各种不同原因的,有的是知识点不熟练,有的是平时解题不规范,有的是审题不严密,有的是心理问题,有的是书写问题等等。所以,在课堂完成练习时,应关注每个学生易丢分的原因加以提醒,并要求学生经常性地反思自己的错误,对一些易错、易忘、易犯的问题随时记录,根据个人的具体情况,查漏补缺,做到知识归类、方法提升,养成良好的习惯。要求学生要重视反思环节,对经常易错、易丢分的知识点要进行归类,并加强这方面的强化练习,逐步提高成绩。
5、重视周测。
每周周测:时间是40分钟的,共22题。针对广州市中考题的前22题,低起点、全覆盖,以基础知识、基本技能训练为主。
围绕知识主干、去掉难题,唤起中下学生的学习愿望与信心,要求做到“不会做的要会做,会做的要准确”。重点在于将基础题、中档题过关,逐步适应中考。
二、第二轮复习。
形式:以专题为主。
重点训练以下几个专题。
专题一选择题、填空题的特点和解法。
我们的中下生要想取得高分就要靠这部分的题目,所以会专门强化训练,争取让学生多拿分。
专题二易得分题(如概率统计题等)
专题三实际应用型问题、设计方案型问题。
专题四开放型与探索型问题。
专题五代数、几何常用数学思想方法。
注意的问题: 1、以题代知识,由于第二轮复习的特殊性,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。
2、专题复习的适当拔高。专题复习要有一定的难度,这是第二轮复习的特点决定的,没有一定的难度,学生的能力是很难提高的,但也要把握一个度。
3. 注重归纳知识,总结规律和提炼方法。每一专题复习教学中,及时引导学生对本专题所涉及的重要基础知识进行归纳,总结规律,概括主要的数学思想和方法,常见的数学思想方法包括:
方程思想、数形结合思想、分类讨论思想、函数思想、转化思想、统计思想等等,具体的数学方法:配方法、换元法、待定系数法、分析法、综合法等,使学生对这些问题从感性认识上升到理性认识。
三、第三轮复习。
形式:模拟题的综合训练,查漏补缺。
注意的问题:1、模拟题的设计要有梯度,时间安排、知识覆盖面、难度、考查知识、重点、各部分知识的比例、分值安排等方面均要贴近中考题。
2、批阅要及时,给特殊的题加批语。某几个题只有个别学生出错,这样的题不能再占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给与讲解。
3、详细统计中等生的失分情况。课堂上集中应讲解中等生出错较集中的题目。
四、建议代数部分第一轮复习的课时安排如下:
第一章实数与代数式(5个课时)
第一课时实数。
第二课时整式。
第三课时因式分解。
第四课时分式。
第五课时二次根式。
第二章方程与方程组(4个课时)
第一课时一元一次方程。
第二课时二元一次方程组。
第三课时分式方程。
第四课时一元二次方程。
第3章不等式(2个课时)
第一课时不等式(组)的解法。
第二课时不等式(组)的应用。
第4章函数及其图像(5个课时)
第一课时函数的概念与图像。
第二课时一次函数。
第三课时反比例函数。
第四课时二次函数。
第五课时函数的应用。
五、各章节考点分析。
第一章实数与代数式
考点1 实数的有关概念与性质。
例1、(2011广东汕头,1,3分)-2的倒数是( )
a.2b.-2cd.
解析:在中考中,对倒数、相反数、绝对值的考查多以填空题、选择题形式出现,此类考题一般需要在准确理解各相关概念的前提下才能正确解答,所以应加强概念的辨析.
考点2 科学记数法、有效数字。
例2、(2012北京4分)我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为。
a、66.6×107 b、0.666×108 c、6.66×108 d、6.66×107
解析:本题考查了科学记数法与有效数字的相关知识,难度不大,但容易做错。科学记数法的表示形式为×10n的形式,其中1≤||10,n为整数.确定n的值是关键点,由于665 575 306有9位,所以可以确定n=9﹣1=8。
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。
练习之后发现还是有部分学生错,就专门要对这些人让他理解清楚科学记数法与有效数字,争取100%过关。
考点3 实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值。
例3(2012 北京5分)计算: .
解析:根据负指数幂、特殊角的三角函数值、二次根式、零指数幂的性质化简,然后根据实数运算法则进行计算即可得出结果。
考点4整式的运算。
例4(2011广东广州市,7,3分)下面的计算正确的是( )
a.3x2·4x2=12x2 b.x3·x5=x15c.x4÷x=x3 d.(x5)2=x7
解析:对于幂的运算性质,很多学生会混淆那几个公式,到底什么时候是指数相加,什么时候指数相乘,这就要让学生理解它们所表示的意义才能对这样的题做起来得心应手。
考点5 分式的概念、性质、运算。
例5(2011四川内江,15,5分)如果分式的值为0,则x的值应为。
解析:分式的值为0的条件是分子为0而分母不为0,学生往往会漏了分母为0。
例6 (2011安徽,15,8分)先化简,再求值:
其中x=-2.
解析:本题考查了分式的化简,先要通分,再约分,最后代入求值。此类题涉及到因式分解,因式分解过关了才能正确化简类似这些题。
考点6二次根式的性质。
例7(2011山东菏泽,4,3分)实数a在数轴上的位置如图所示,则化简后为。
a. 7b. -7c. 2a-15d. 无法确定。
解析:解此类题的关键是正确利用进行二次根式的化简。对于此类题,部分中下水平的学生来说是个难点,要让学生理解了才能掌握好。
考点7因式分解。
例7(2011浙江丽水,3,3分)下列各式能用完全平方式进行分解因式的是( )
a.x2 +
解析:因式分解中的公式法:完全平方公式和平方差公式,学生最容易混淆,要学生们熟记并会运用。
第二章方程与方程组。
考点1方程(组)的解法:
例1(2011广东肇庆,4,3分)方程组的解是( )
a. b. c. d.
解析:主要考查一元一次方程、一元二次方程、二元一次方程组和可化为一元一次方程的分式方程的解法。
考点2方程(组)的相关概念:
例2(2011广东湛江15,4分)若是关于的方程的解,则的值为。
例3(2011山东枣庄,6,3分)已知是二元一次方程组的解,则的值为( )
a.-1 b.1 c.2 d.3
解析:根据方程(组)的解(解的情况),确定方程中字母系数的值(或取值范围),比单纯的解方程(组)要复杂,一般以选择题、填空题形式出现。
考点3 根的判别式。
例4( 2011重庆江津, 9,4分)已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )
2b,a><2且a≠<-2·
解析:考查根的判别式通常有两种类型:一是已知根的判别式的情况,求系数的取值范围;二是由根的判别式的值,确定根的情况。
考点4 根与系数的关系。
例5(2011四川南充市,18,8分)关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。
1)求k的取值范围;
2)如果x1+x2-x1x2<-1且k为整数,求k的值。
解析:一元二次方程的根与系数的关系考查经常以填空、选择、阅读题的形式出现,或以压轴题的形式出现(如09广州市第25题),并常和平方差公式、完全平方公式结合考查。
考点5 实际应用。
例6(2011湖南常德,23,8分)某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费。甲说:
“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?
以及超过3千米后,每千米的车费是多少元?
解析:把实际问题转化为方程(组)的问题,解题时要注意审题,找出问题中相关数量之间的相等关系,并把这种关系“翻译”为方程(组),并注意检验所列方程及其解的实际意义,找出合乎实际的结果。
第三章不等式。
考点1 不等式的性质。
不等式的性质是不等式变形的依据,考题一般以选择题的形式出现,解这类问题需要同学们灵活掌握并熟练应用不等式的性质。
例1 (2012,广州)已知,若c是任意实数,则下列不等式中总是成立的是( )
a. b. cd.
解析:本题主要考查不等式的基本性质,解题时要根据c 的取值来观察、比较变形前、后不等号方向以及不等式两边的变化情况。
考点2 解一元一次不等式(组)。
解一元一次不等式(组)、解集的数轴表示都是中考的重点,解题时要灵活运用不等式的解题步骤和不等式组的解题方法,还要能在数轴上准确地表示解集。
例2:(2012,佛山)解不等式组。
解析:解一元一次不等式与解一元一次方程的步骤基本相同,只是在最后“把系数化为1”时,要注意不等号的方向是否要改变。解不等式组一般先求出每一个不等式的解集,然后再求出他们的公共部分。
确定不等式组的解集一般有“口诀法”和“数轴法”两种方法。在数轴上表示不等式组的解集时,要注意:大于向右画,小于向左画,含右等号的时实心圆点,不含等号的是空心圆圈。
九年级数学一轮复习代数部分总复习阶段检测试卷
九年级数学总复习阶段检测试卷。一 选择题 共12小题 1 下列运算正确的是 a m6 m2 m3 b x 1 2 x2 1 c 3m2 3 9m6 d 2a3a4 2a7 2 被誉为 中国天眼 的世界上最大的单口径球面射电望远镜fast的反射面总面积相当于35个标准足球场的总面积 已知每个标准足球场...
八年级上代数部分总复习
第一部分 知识要点回顾。一 重点难点归纳 重点 1 对平方根 算术平方根概念的理解和应用 2 无理数运算法则的掌握和运用 3 乘法公式的掌握和运用 4 整式的除法法则的理解和应用 难点 1 平方根 实数概念的理解 2 幂的运算法则的逆用 3 多项式乘以多项式的计算 4 灵活 恰当地将一个多项式因式分...
2023年概率部分的复习建议
万学海文 李兰巧。2011年的考试大纲已经出炉,11年大纲概率部分和10年完全没有区别,所以考生在复习的时候可以按照既定计划进行复习即可。概率具体来说 第。一 二章是基础,很少单独命题,经常结合后面的章节进行考察,但是这两章也要理解的很深刻,因为,这部分内容理解透彻了,后面内容就更容易掌握了。我们要...