课时作业(一)
一、选择题。
1.(2023年浙江杭州3月模拟)若全集u=,up=,则集合p可以是。
a. b.c. d.
解析:由题意得p=.又a化简得,b化简得,c化简得,d化简得.故选a.
答案:a2.(2023年大纲全国)已知集合a=,b=,a∪b=a,则m
a.0或 b.0或3
c.1或 d.1或3
解析:由a∪b=a得ba,有m∈a,所以有m=或m=3,即m=3或m=1或m=0,又由集合中元素互异性知m≠1,故选b.
答案:b3.(2023年北京)已知集合a=,b=,则a∩b
a.(-1) b.(-1,-)
c.(-3) d.(3,+∞
解析:∵a=,b=,∴a∩b=,故选d.
答案:d4.(2023年北京西城二模)已知集合a=,b=.若a∪b=b,则c的取值范围是。
a.(0,1] b.[1,+∞
c.(0,2] d.[2,+∞
解析:本题考查了集合的运算及不等式的解法,a=,函数f(x)=的定义域为d,则m∩(ud
a.[0,1) b.(0,1)
c.[0,1] d.
解析:由m=,可得m=,又由题意知:d=,则ud=,∴m∩(ud)=,故选c.
答案:c6.(2013届福建省高三上学期第一次联考)已知集合a=,集合b=,且a∩b=,则a∪b
a. b.c. d.
解析:因为a2=1,所以a=1或a=-1,当a=1时,b=与集合中元素互异性矛盾,所以舍去,故a=-1,此时b=,所以b=1,所以a∪b=.
答案:c二、填空题。
7.已知集合a=,b=,则a∩b=__
解析:a,b都表示点集,a∩b即是由a中在直线x+y-1=0上的所有点组成的集合,代入验证即可.
答案:8.设集合a=,集合b=且ab,则a的值是___
解析:由a=及集合元素的互异性可知a≠0,所以a2≠0,-a3≠0,又ab,所以a2-1=0,解得a=±1.
当a=-1时,a2=-a3=1,这与集合元素互异性矛盾,舍去.
当a=1时,a=,b=,满足ab.
综上a=1,故填1.
答案:19.设a,b是非空集合,定义a×b=,已知a=,b=,则a×b=__
解析:a∪b=[0,+∞a∩b=[0,2],所以a×b=(2,+∞
答案:(2,+∞
三、解答题。
10.设a=,b=,若a∩b={}求a∪b.
解:∵a∩b={}a且∈b.
将分别代入方程2x2-px+q=0及6x2+(p+2)x+5+q=0,联立得方程组。
解得。a==,b==,a∪b=.
11.已知全集s=,a=.如果sa=,则这样的实数x是否存在?若存在,求出x;若不存在,说明理由.
解:法一:∵sa=,0∈s且0a,即x3-x2-2x=0,解得x1=0,x2=-1,x3=2.
当x=0时,|2x-1|=1,集合a中有相同元素,故x=0不合题意;
当x=-1时,|2x-1|=3∈s;
当x=2时,|2x-1|=3∈s.
存在符合题意的实数x,x=-1或x=2.
法二:∵sa=,∴0∈s且0a,3∈a,x3-x2-2x=0且|2x-1|=3,x=-1或x=2,存在符合题意的实数x,x=-1或x=2.
12.(2023年安徽合肥月考)已知集合a=,b=.
1)若a∪b=a,求实数m的取值;
2)若a∩b=,求实数m的值;
3)若arb,求实数m的取值范围.
解:a=,b=
1)∵a∪b=a,∴ba,如图。
有:,∴m=1.
2)∵a∩b=∴,m=2.
3)rb=.
arb ∴m-2>3或m+2<-1,m>5或m<-3.
热点**]13.(1)(2023年山东高考调研)已知集合a=,b=,且(a∪b)(a∩b),则实数a
a.0 b.1
c.2 d.3
2)非空集合g关于运算⊕满足:
对任意的a,b∈g,都有a⊕b∈g;
存在e∈g,使得对一切a∈g,都有a⊕e=e⊕a=a,则称g关于运算⊕为“融洽集”.
现给出下列集合和运算:
g=,⊕为整数的加法;
g=,⊕为整数的乘法;
g=,⊕为平面向量的加法.
集合g关于运算⊕为“融洽集”的是___
解析:(1)由(a∪b)(a∩b)易得a∪b=a∩b,则a=b,∴a=1.
2)①g=,⊕为整数的加法.
任意两个非负整数的和仍为非负整数,且存在e=0,使得对一切a∈g,都有a⊕0=0⊕a=a,集合g关于运算⊕为“融洽集”.
g=,⊕为整数的乘法.
任意两个偶数的乘种仍是偶数,但不存在偶数e∈g使得对一切a∈g,都有a⊕e=e⊕a=a成立,集合g关于运算⊕不为“融洽集”.
g=,⊕为平面向量的加法.
任意两个向量之和仍为向量,且存在e=0,使得对一切a∈g,都有a⊕0=0⊕a=a成立,集合g关于运算⊕为“融洽集”,综上所述,其中g关于运算⊕为“融洽集”的有①③.
答案:(1)b (2)①③
考点2集合的基本运算
1.已知,则 考点 交集及其运算 答案 分析 2.已知集合,则。考点 本题考查集合 一元二次不等式的计算及对数函数的性质。答案 分析 3.设集合s 所以s t 4.已知集合,若,则 考点 集合的并集 交集运算。答案 分析 根据,5.已知集合,则集合 考点 集合的交集运算。答案 分析 由a中方程变形得...
校本作业集合的基本运算2 补集
集合的基本运算2 补集 一 选择题。1 已知集合u a 则ua等于 a c d 2 已知全集u r,集合m 则um等于 a 3 设全集u a b 则a ub 等于 a c 4.设全集,集合,则 a.b.c.d.5 设全集u和集合a b p满足a ub,b up,则a与p的关系是 a a upb a ...
寒假作业1集合与函数1学生版
2011 2012学年度高一数学暑假作业1集合与函数 一 一 填空题 1 若,则。2 已知一个函数的解析式为,它的值域是,则函数的定义域为。3 设全集为,用集合a b 的交 并 补集符号表图中的阴影部分。4 设集合,m n 5 已知,则实数的取值范围是 6 若的定义域为,则的定义域为。7 对于集合,...