2024年全国硕士研究生入学统一考试。
数学(一)试卷。
一、(本题共3小题,每小题5分,满分15分)
1)求幂级数的收敛域。
2)设且,求及其定义域。
3)设为曲面的外侧,计算曲面积分
二、填空题(本题共4小题,每小题3分,满分12分。把答案填在题中横线上)
1)若则。2)设连续且则。
3)设周期为2的周期函数,它在区间上定义为 ,则的傅里叶级数在处收敛于。
4)设4阶矩阵其中均为4维列向量,且已知行列式则行列式。
三、选择题(本题共5小题,每小题3分,满分15分。每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
1)设可导且则时在处的微分是。
a)与等价的无穷小b)与同阶的无穷小
c)比低阶的无穷小d)比高阶的无穷小。
2)设是方程的一个解且则函数在点处。
a)取得极大值b)取得极小值
c)某邻域内单调增加d)某邻域内单调减少。
3)设空间区域则。
abcd)
4)设幂级数在处收敛,则此级数在处。
a)条件收敛b)绝对收敛。
c)发散d)收敛性不能确定
5)维向量组线性无关的充要条件是。
a)存在一组不全为零的数使。
b)中任意两个向量**性无关。
c)中存在一个向量不能用其余向量线性表示。
d)中存在一个向量都不能用其余向量线性表示
四、(本题满分6分)
设其中函数、具有二阶连续导数,求。
五、(本题满分8分)
设函数满足微分方程其图形在点处的切线与曲线在该点处的切线重合,求函数。
六、(本题满分9分)
设位于点的质点对质点的引力大小为为常数为质点与之间的距离),质点沿直线自运动到求在此运动过程中质点对质点的引力所作的功。
七、(本题满分6分)
已知其中求。
八、(本题满分8分)
已知矩阵与相似。
1)求与。2)求一个满足的可逆阵。
九、(本题满分9分)
设函数在区间上连续,且在内有证明:在内存在唯一的使曲线与两直线所围平面图形面积是曲线与两直线所围平面图形面积的3倍。
十、填空题(本题共3小题,每小题2分,满分6分。把答案填在题中横线上)
1)设在三次独立试验中,事件出现的概率相等,若已知至少出现一次的概率等于则事件在一次试验**现的概率是。
2)若在区间内任取两个数,则事件”两数之和小于”的概率为。
3)设随机变量服从均值为10,均方差为0.02的正态分布,已知。
则落在区间内的概率为。
十一、(本题满分6分)
设随机变量的概率密度函数为求随机变量的概率密度函数。
2024年全国硕士研究生入学统一考试。
数学(一)试卷。
一、填空题(本题共5小题,每小题3分,满分15分。把答案填在题中横线上)
1)已知则。
2)设是连续函数,且则。
3)设平面曲线为下半圆周则曲线积分。
4)向量场在点处的散度。
5)设矩阵则矩阵。
二、选择题(本题共5小题,每小题3分,满分15分。每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
1)当时,曲线。
a)有且仅有水平渐近线b)有且仅有铅直渐近线。
c)既有水平渐近线,又有铅直渐近线d)既无水平渐近线,又无铅直渐近线。
2)已知曲面上点处的切平面平行于平面则点的坐标是。
ab) cd)
3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是。
abcd)
4)设函数而其中。
则等于。ab)
cd) 5)设是阶矩阵,且的行列式则中。
a)必有一列元素全为0b)必有两列元素对应成比例。
c)必有一列向量是其余列向量的线性组合 (d)任一列向量是其余列向量的线性组合。
三、(本题共3小题,每小题5分,满分15分)
(1)设其中函数二阶可导具有连续二阶偏导数,求。
(2)设曲线积分与路径无关,其中具有连续的导数,且计算。
的值。3)计算三重积分其中是由曲面与所围成的区域。
四、(本题满分6分)
将函数展为的幂级数。
五、(本题满分7分)
设其中为连续函数,求。
六、(本题满分7分)
证明方程在区间内有且仅有两个不同实根。
七、(本题满分6分)
问为何值时,线性方程组。
有解,并求出解的一般形式。
八、(本题满分8分)
假设为阶可逆矩阵的一个特征值,证明。
1)为的特征值。
2)为的伴随矩阵的特征值。
九、(本题满分9分)
设半径为的球面的球心在定球面上,问当为何值时,球面在定球面内部的那部分的面积最大?
十、填空题(本题共3小题,每小题2分,满分6分。把答案填在题中横线上)
1)已知随机事件的概率随机事件的概率及条件概率则和事件的概率。
2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为。
3)若随机变量在上服从均匀分布,则方程有实根的概率是。
十一、(本题满分6分)
设随机变量与独立,且服从均值为1、标准差(均方差)为的正态分布,而服从标准正态分布。试求随机变量的概率密度函数。
2024年全国硕士研究生入学统一考试。
数学(一)试卷。
一、填空题(本题共5小题,每小题3分,满分15分。把答案填在题中横线上)
1)过点且与直线垂直的平面方程是。
2)设为非零常数,则。
3)设函数 ,则。
4)积分的值等于。
5)已知向量组。
则该向量组的秩是。
二、选择题(本题共5小题,每小题3分,满分15分。每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
1)设是连续函数,且则等于。
ab)cd)
2)已知函数具有任意阶导数,且则当为大于2的正整数时的阶导数是。
ab) cd)
3)设为常数,则级数。
a)绝对收敛b)条件收敛。
c)发散d)收敛性与的取值有关
4)已知在的某个邻域内连续,且则在点处。
a)不可导b)可导,且。
c)取得极大值d)取得极小值
5)已知、是非齐次线性方程组的两个不同的解、是对应其次线性方程组的基础解析、为任意常数,则方程组的通解(一般解)必是。
ab) cd)
三、(本题共3小题,每小题5分,满分15分)
(1)求。(2)设其中具有连续的二阶偏导数,求。
3)求微分方程的通解(一般解).
四、(本题满分6分)
求幂级数的收敛域,并求其和函数。
五、(本题满分8分)
求曲面积分。
其中是球面外侧在的部分。
六、(本题满分7分)
设不恒为常数的函数在闭区间上连续,在开区间内可导,且证明在内至少存在一点使得。
七、(本题满分6分)
设四阶矩阵。
且矩阵满足关系式。
其中为四阶单位矩阵表示的逆矩阵表示的转置矩阵。将上述关系式化简并求矩阵。
八、(本题满分8分)
求一个正交变换化二次型成标准型。
九、(本题满分8分)
十、填空题(本题共3小题,每小题2分,满分6分。把答案填在题中横线上)
1)已知随机变量的概率密度函数。
则的概率分布函数。
2)设随机事件、及其和事件的概率分别是.3和0.6,若表示的对立事件,那么积事件的概率。
3)已知离散型随机变量服从参数为2的泊松分布,即则随机变量的数学期望。
十一、(本题满分6分)
设二维随机变量在区域内服从均匀分布,求关于的边缘概率密度函数及随机变量的方差。
2024年全国硕士研究生入学统一考试。
数学(一)试卷。
一、填空题(本题共5小题,每小题3分,满分15分。把答案填在题中横线上。
1)设 ,则。
2)由方程所确定的函数在点处的全微分。
3)已知两条直线的方程是则过且平行于的平面方程是。
4)已知当时与是等价无穷小,则常数。
5)设4阶方阵则的逆阵。
二、选择题(本题共5小题,每小题3分,满分15分。每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
1)曲线。a)没有渐近线b)仅有水平渐近线
c)仅有铅直渐近线d)既有水平渐近线又有铅直渐近线
2)若连续函数满足关系式则等于。
ab) cd)
3)已知级数则级数等于。
a)3b)7
c)8d)9
4)设是平面上以、和为顶点的三角形区域是在第一象限的部分,则。
等于。ab)
cd)0 5)设阶方阵、、满足关系式其中是阶单位阵,则必有。
ab) cd)
三、(本题共3小题,每小题5分,满分15分)
(1)求。(2)设是曲面在点处的指向外侧的法向量,求函数在点处沿方向的方向导数。
3)其中是由曲线绕轴旋转一周而成的曲面与平面所围城的立体。
四、(本题满分6分)
过点和的曲线族中,求一条曲线使沿该曲线从到的积分。
的值最小。五、(本题满分8分)
将函数展开成以2为周期的傅里叶级数,并由此求级数的和。
六、(本题满分7分)
设函数在上连续内可导,且证明在内存在一点使。
七、(本题满分8分)
已知及。(1)、为何值时不能表示成的线性组合?
(2)、为何值时有的唯一的线性表示式?写出该表示式。
八、(本题满分6分)
设是阶正定阵是阶单位阵,证明的行列式大于1.
九、(本题满分8分)
在上半平面求一条向上凹的曲线,其上任一点处的曲率等于此曲线在该点的法线段长度的倒数(是法线与轴的交点),且曲线在点处的切线与轴平行。
2019考研数一真题
2010年全国硕士研究生入学统一考试。数学 一 试卷。一 选择题 1 8小题,每小题4分,共32分。1 极限 a 1b cd 2 设函数由方程确定,其中为可微函数,且则 ab cd 3 设为正整数,则反常积分的收敛性。a 仅与取值有关b 仅与取值有关。c 与取值都有关d 与取值都无关。ab cd 5...
2019考研数一真题
2009年全国硕士研究生入学统一考试。数学 一 试卷。一 选择题。1 当时,与等价无穷小,则。ab cd 3 设函数在区间上的图形为。则函数的图形为。ab cd 4 设有两个数列,若,则。a 当收敛时,收敛b 当发散时,发散。c 当收敛时,收敛d 当发散时,发散。5 设是3维向量空间的一组基,则由基...
2024年考研数学真题 数一 真题
2011年考研数学真题 数一 真题。2011年考研数学真题 数一 答案解析。幸福,不能用手去捉摸,只能用心去琢磨,只能静静去体味。细细地品味了,你就享受到了它温馨的暖,或浓或淡的甜!幸福,其实很简单。幸福就是和爱人一起漫步,幸福就是吃到妈妈的拿手饭菜,幸福就是孩子在你的脚跟前转悠,幸福就是你能帮父母...