7、体积:物体所占空间的大小。常用的体积单位有:
容积:容器、桶、仓库等所能容纳物体的体积。常用的容积单位有:l ml
体积与容积间的单位换算:
8、分数与除法的关系:分数的分子相当于除法里的被除数,分母相当于除法里的除数,分数线相当于除法里的除号,分数的大小(分数的值)相当于除法里的商。区别:
分数是一种数,除法是一种运算。它的关系用字母表示为:
9、分子比分母小的分数叫真分数,真分数小于1;分子比分母大(或相等)的分数叫假分数,假分数大于或等于1。假分数一定大于真分数。
10、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
11、最简分数:分子和分母只有公因数1的分数叫最简分数。
12、同分数加减法的计算法则:分母不变,把分子相加减。
13、异分母加减法的计算法则:先通分,再按照同分母加减法的计算法则进行计算。
奇数:不是的倍数的数。偶数:是的倍数的数。
15、质数:一个数除了1和它本身两个约数,没有别的约数的数。合数:一个数除了1和它本身以外,还有别的约数的数。1不是质数,也不是合数。
的倍数的特点:个位上是的数。5的倍数的特点:个位上是0或5的数。3的倍数的特点:一个数各位上的数字之和是3的倍数的数。
17、互质数:只有公因数1的两个数。如:2和5,9和8,7和15,4和9。
六、解决问题。
1、求一个量是另一个量的几分之几的?
方法:用一个量除以另一个量。注意:结果约成最简分数。
例:把5克糖放入20克水中,糖的重量占水的几分之几?糖的重量占糖水的几分之几?
解答思路:第一问题是求糖的重量是水的几分之几应该用糖的重量去除以水的重量。而第二问题是求重量是糖水的重量的几分之几应该用糖的重量去除以糖水的重量。根据分析列式为:
2、分数加减法应用题。
例1:水果店里原有水果[',altimg': w':
16', h': 43'}]吨,卖出[',altimg': w':
16', h': 43'}]吨后又运进[',altimg': w':
16', h': 43'}]吨。水果店现在有水果多少吨?
解答思路:由于每个分数都带上了单位,所以每个分数表示具体的数量。应该用我们以前学的整数应用题的解答方法进行解答。
例2:五四班有45人,有[',altimg': w':
16', h': 43'}]的同学参加了语文兴趣小组,有[',altimg': w':
16', h': 43'}]的同学参加了数学兴趣小组,其余的参加了音、体、美兴趣小组。参加音、体、美兴趣小组的同学占全班同学的几分之几?
解答思路:本题的每个分数没有带单位,它表示量与量之间的关系。因此本题应把全班45人看作单位“1”进行思考。
3、长方体正方体表面积、体积的应用。
方法:根据题意学会画图进行分析思考,抓住重点词句,利用好其计算公式。
例1:给一个无盖长方体水缸抹水泥,从里面量得长8分米,宽4分米,深6分米;抹水泥的面积是多少?
解答思路:这是关于长方体的表面积的应用,从无盖和抹水泥的面积中可以看出。在计算时,由于无盖只算五个面。
8×4+8×6×2+4×6×2=176(平方分米)
4、最大公因数和最小公倍数的应用。
例1:五一班有48人,五二班有56人。如果把这两个班分**数相等的小组,每组最多几人?一共可分几个小组?
解答思路:根据题意,要想两个班分成的人数相等,说明这个人数既是48的因数,也是56的因数,由于是求每组人数最多几人,所以是求它们的最大公因数。
48的因数有:1,2,3,4,6,8,12,16,24,48.
56的因数有:1,2,4,7,8,14,28,56。
48和56的最大公因数是8。所以每组人数最多是8人。
48÷8+56÷8=13(组)
例2:一个班有40多人,如果4个人一组或6个人一组都能刚好分完,这个班有多少人?
解答思路:根据题意,4人一组或多或6人一组都能刚好分完,所这个班的人数既是4的倍数也是6的倍数。所以是4和6的公倍数,并且是在40多的一个公倍数。
4的倍数:4,8,12,16,20,24,28,32,36,40,44,48。
6的倍数:6,12,18,24,30,36,42,48。
4 和6的公倍数有:12,24,36,48。
所以这个班有48人。
5、找次品。
有一批零件共15个,其中有一个比其它零件轻一些,你能用天平找出这个次品来吗?至少要几次一定能找到这个次品?
解答:15个零件(5,5,5)先天平各放5个,如果不平衡,将其中轻的5个零件再分成(2,2,1),又将天平各放2个,如果不平衡,最后将轻的2个零件再分面(1,1)。这样至少三次就可以找出这个较轻的零件了。
每个大格是30度,每个小格是6度。
九、最大公因数和最小公倍数。
方法:列举法短除法集合法口算法。
18和12(6)[24] 30和60(30)[60] 7和和12(2)[24]
如果两个数是倍数关系,则它们的最大公因数是较小的数,最小公倍数是较大的数。
如果两个数是互质数,则它们的最大公因数是1,最小公倍数是它们的乘积。
十、通分与约分。
依据:分数的基本性质用字母表示:
例1:将下面的分数约成最简分数。
例2:将下面的各组分数进行通分。
十。一、分数与小数的互化。
小数化分数的方法:先将小数改写成分母是的分数,能约分的再约分。
例 分数化成小数的方法:一般根据分数与除法的关系,用分子除以分母,除不尽的保留一定的小数位数。
例。常用的分数与小数间的互化。
十。二、分解质因数。
方法:将合数写成几个质数相乘的形式。
十。三、分数的意义。
把单位“1”平均分成若干份,表示其中的一份或几份的数。
如[',altimg': w': 16', h': 43', omath': 25'}]表示,把单位“1”平均分成5份,取其中的2份。
', altimg': w': 16', h':
43', omath': 58'}]千克,表示把1千克平均分成8份,取其中的5份,就是[',altimg': w':
16', h': 43', omath': 58'}]千克。
人教版五年级下册数学
5 服装厂有布1200米,先做大人服装150套,每套用布5,米,剩下的做小孩衣服,每套衣服比大人服装节省2米,可以做小孩衣服多少套?6 修路队修一条路,计划每天修150米,12天完成,如果要提前2天完成,每天应修多少米?7 修路队修一条路,计划每天修100米,18天完成,如果每天比计划多修80米,可...
人教版五年级下册数学
一 我会填。1 在1 10中,既是质数又是偶数的数有 既是合数又是奇数的数有既不是质数也不是合数。2 的分数单位是 它含有 个这样的分数单位,再加上 个这样的单位就是2。米 千米 36厘米 米。5 一袋米重3千克,把它平均分成5份,每份重是这袋米的,每份重是千克。6 一个正方体的棱长之和是96厘米,...
人教版五年级下册数学
人教版五年级下册数学 通分 教学设计。教学内容。人教版实验教科书五年级下册第94的内容及相应练习。教学目标。知识与技能 理解通分的意义,掌握通分的方法,能比较熟练的进行通分。过程与方法 经历探索合作交流 自主探索的学习活动,能正确的进行计算。情感 态度与价值观 渗透转化的数学思想,培养学生观察能力以...