强调:我们先研究具有代表性的长方形与圆柱的关系.
2)寻求发现.展开的长方形的长和宽与圆柱的关系.
师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
讨论:平行四边形能否通过什么方法转化成长方形?
平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。
想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.
2)圆柱的表面积。
教学内容:p13-14页例3-例4,完成“做一做”及练习二的部分习题。
教学目标:1、 在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、 培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教学过程:一、复习。
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
1)一个圆形花池,直径是5米,周长是多少?
2)长方形的面积怎样计算?
板书:长方形的面积=长×宽.
二、新课。1.圆柱的侧面积。
1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题。
1)学生审题,回答下面的问题:
这两道题分别已知什么,求什么?
计算结果要注意什么?
2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3. 理解圆柱表面积的含义.
1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。
由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。
这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 表面积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
圆柱的表面积练习课。
教学内容:练习二余下的练习。
教学目标:1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:运用所学的知识解决简单的实际问题。
教学难点:运用所学的知识解决简单的实际问题。
教学过程:一、复习。
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用c÷π÷2来求出圆柱的底面半径)
二、实际应用。
1、练习二第13题。
1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
2、练习二第7题。
1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)
2)学生独立完成这道题,集体订正。
3、练习二第9题。
1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)
2)指名板演,其他学生独立完成于课堂练习本上。
4、练习二第16题。
1)学生读题理解题意后尝试独立解题。
2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。
5、练习二第19题。
1)学生小组讨论:可以漆色的面有哪些?
2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。
三、布置作业。
练习二第及20题完成在作业本上。
圆柱的体积。
教学内容:p19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。
教学目标:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、 渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学过程:1、圆柱体积计算公式的推导。
1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——
2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)
2、教学补充例题。
1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
2)指名学生分别回答下面的问题:
这道题已知什么?求什么?
能不能根据公式直接计算?
计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
3)出示下面几种解答方案,让学生判断哪个是正确的.
v=sh50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
2.1米=210厘米。
v=sh50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
50平方厘米=0.5平方米。
v=sh0.5×2.1=1.05(立方米)
答:它的体积是1.05立方米。
50平方厘米=0.005平方米。
v=sh0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.
4)做第20页的“做一做”。
学生独立做在练习本上,做完后集体订正.
3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(v=πr2h)
4、教学例6
1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)
2)学生尝试完成例6。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
4、 比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)
圆柱体积计算的应用。
教学内容:课本第10页例4;练一练;《作业本》第5页。
教学目标:1、巩固圆柱体积的计算方法,提高计算的熟练程度,能应用圆柱体积计算方法解决简单的实际问题。
2、结合教学内容培养学生认真审题、仔细计算的良好习惯和思维过程的完整性。
教学重点:运用公式解决一些简单的实际问题。
教学难点:运用公式解决一些简单的实际问题。
教学过程:一、复习铺垫。
1、口算训练。
2、复习圆柱的体积。
我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么?
二、学习探索。
1、教学圆柱体积公式的另一种形式。
请大家想一想,如果已知圆柱底面的半径r和高h,圆柱体积的计算公式应该怎样表达?
引导学生根据底面积s与半径r的关系可以知道:s=π,所以圆柱体积的计算公式也可以写成:v=π×h。
2、教学例4。
出示例4。1)教师提出下面问题帮助学生理解题意:
这道题已知什么?求什么?
求粮仓的容积是什么意思?根据什么公式?为什么?
六年级数学第二单元圆柱和圆锥
南圣中心小学电子备课单元备课案。六年级数学学科 第二单元 单元主题。百分数。备课教师。吕诗南。本单元在学生认识了圆,掌握了长方体和正方体的形状特征以及表面积与体积计算方法的基础上编排,是小学数学最后教学的形体知识。与长。教方体 正方体一样,圆柱和圆锥也是基本的几何形体,在日常生活和生产。劳动中经常能...
小学六年级数学下册第二单元圆柱 圆锥试卷
小学数学六年级下册第二单元课程改革检测试卷。一 计算。22分 1 直接写出得数。6分 2 选用适当的方法计算。16分 二 填空。每空2分,合26分 1 求出下面圆柱的侧面积和体积。2 求出下面圆锥的体积。小学数学六年级第二单元 1 3 把圆柱的底面分成许多相等的扇形,将圆柱切开,拼成一个近似的长方体...
人教版六年级数学下册第二单元圆柱圆锥教案
一 圆柱。圆柱的定义。1 以矩形的一边绕着另一条边旋转360 所得到的空间几何体叫做圆柱,即ag矩形的一条边为轴,旋转360 所得的几何体就是圆柱。其中ag叫做圆柱的轴,ag的长度叫做圆柱的高,所有平行于ag的线段叫做圆柱的母线,da和d g旋转形成的两个圆叫做圆柱的底面,dd 旋转形成的曲面叫做圆...