人教版六年级下册数学第二单元《圆柱与圆锥》课后教学反思。
人教版第二单元:《圆柱和圆锥》教学反思。
综合复习了圆柱和圆锥部分的知识以后,练习题也做了不少,可我发现许多同学仍然在某些题上频繁出错,或隔一段时间再做就会出错,我仔细分析了一下,发现他们还是没有真正理解题意,怎么办呢?经过思索,我终于发现,问题的根源在于我,在于我的引导方法不对,如:
一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,1)前轮转动一周,前进了多少米?
2)如果每分钟滚动15周,压过的路面是多少平方米?
对于这样一道题,我总觉得学生理解起来应该不难,因此每次只是抽学生回答一下:
第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。
并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,在一次教研交流中听了于老师说的一句话,我茅塞顿开,我的引导还是过于含糊了,因此,在下节课中,在讲评这道题中,我也随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的前轮滚动的情况,边演示边指:
前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受,同时我告诉学生,以后遇到你不理解的情况,也要积极想办法,如画图、利和手中的书本等帮助自己化抽象为形象,从而化难为易,而不能不加思考去拼凑算式。
再如,课本59页第12题:欣欣把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的圆锥形,你知道它的高吗?
大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但,当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。
怎么办?背公式吗?学生记不住,也限制了思维的发展。
后来,我发现一个孩子在本上画图,我受到了启发:是啊,当它们体积相等时,学生可以在本上画图,凭直觉就能发现,当底面积也相等时,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱的3倍。接着,我又在黑板上画了个相反的情况:
试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的1/3,会是什么样子呢?我画上以后,学生哈哈大笑,也轻松掌握了这一方法,以后,在这类题上就很少出错了。
通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,要不,学生记住的,也是一些死答案。
六下数学第二单元圆柱与圆锥教学反思12册。
第一课时。教学反思:
通过教学并借助学生日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,让学生能看懂圆柱的平面图;并更好地认识圆柱侧面的展开图。
第二课时。教学反思:
学生通过本课时学习在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。让知识来自生活,把知识运用到生活。
第三课时。教学反思:
通过学生的生活实际上的知识进行延伸,使学生学会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。并培养学生良好的空间观念和解决简单的实际问题的能力。少数的学生在计算圆柱表面积时,运用圆的面积公式和圆的周长公式还容易混淆。
第四课时。教学反思:
通过本课时学习,让学生用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。从而让学生初步学会用转化的数学思想和方法,提高解决实际问题的能力。
第五课时。教学反思:
通过本课时练习,学生能够运用公式正确地计算圆柱的体积和容积。初步学会用转化的数学思想和方法,解决实际问题的能力,在学习与练习中渗透转化思想,从而培养学生的自主探索意识。
第六课时。教学反思:
通过本课时学习让学生认识了圆锥,以及圆锥的高和侧面,并掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
课堂中通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
第七课时。教学反思:
在本课时中通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。在学生的学习过程中借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
第八课时。教学反思:
通过本课时的复习,能较好地让学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。培养学生学生的空间观念与学习态度。
圆柱与圆锥》这一单元内容重点分两大板块---表面积和体积,是简单的立体几何知识,知识显得较为抽象,学生理解起来比较困难,解题时计算的难度也较大,学生出错的现象可以说是多方面的,主要归纳如下:
一、这一单元公式多,学生容易混淆,如圆的周长和面积;表面积和侧面积;圆锥和圆柱的体积(特别计算圆锥的体积时很多的学生总是漏×1/3)。
策略:在理解的基础上熟记各种公式,并利用题组训练突破圆柱和圆锥的关系:1、等底等高,v柱=3v锥。
2、等底等积,3h柱=h锥。
3、等高等积,3s柱=s锥。
二、计算难度大,全是小数的加减乘除法计算,学生容易出错。
策略:加强小数的计算训练,特别是多进行n×3.14的训练,提高计算准确率。
三、审题不认真。在求体积的题目中,一些题目给出圆柱的半径、高单位不统一,学生往往就没注意到,经常出错。
策略:要求学生解题是一定要注意先统一单位,再计算。遇到面积单位、体积单位之间的换算,学生习惯性地使用了长度单位的10进制,要特别注意纠正。
四、对题目的理解不到位,关于圆柱面积的计算经常出错。
策略:以题组的形式进行对比训练。
如:1、 给圆柱体模型刷油漆(求表面积)
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。2、 圆柱形罐头贴商标(求侧面积)
3、 厨师帽的材料(求表面积,但不计算下底面)
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。4、 铁桶的材料(求表面积,但不计算上底面)
人教版六年级下册数学第二单元
我的学校美如花我的班级很团结聪明的我会成功。我研究的课题 圆柱表面积的应用。我奋斗的目标 1 我更加熟练地掌握圆柱的特征 2 我会求圆柱的侧面积,表面积 3 我能够运用知识解决实际问题。我的 过程 一 温故而知新。1 圆柱的两个底面是 两个底面之间的距离叫做圆柱的 圆柱的高有 条。2 圆柱的侧面展开...
人教版小学数学六年级下册第二单元圆柱与圆
人教版小学数学六年级下册 第二单元圆柱与圆锥 圆柱 第一课时教学设计教学。圆柱的认识,圆柱的特征 底面 侧面 高以及侧。时间分配。讲授16分。练习24分。内容面展开图与圆柱的关系等教学理念。注重学生已有的生活经验,感受数学 于生活,运用于生活。教学伊始,先出示情境图,让学生观察生活中的圆柱,并让学生...
人教版小学数学六年级下册第二单元圆柱与圆
人教版小学数学六年级下册 第二单元圆柱与圆锥 圆柱 第一课时教学设计教学。圆柱的认识,圆柱的特征 底面 侧面 高以及侧。时间分配。讲授16分。练习24分。内容面展开图与圆柱的关系等教学理念。注重学生已有的生活经验,感受数学 于生活,运用于生活。教学伊始,先出示情境图,让学生观察生活中的圆柱,并让学生...