小学五六年级奥数解题技巧

发布 2020-08-02 14:23:28 阅读 5606

奥赛专题 --抽屉原理

例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?

分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?

分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。

我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。

所以,任意4个自然数,至少有2个自然数的差是3的倍数。

例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。

按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。

所以,至少要取6+2+2=10只袜子,就一定会配成3双。

思考:1.能用抽屉原理2,直接得到结果吗?

2.把题中的要求改为3双不同色袜子,至少应取出多少只?

3.把题中的要求改为3双同色袜子,又如何?

例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?

分析与解】从最“不利”的取出情况入手。

最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。

故总共至少应取出10+5=15个球,才能符合要求。

思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?

当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。

奥赛专题 --还原问题

例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。这时他的存折上还剩1250元。他原有存款多少元?

分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是 1250+100=1350(元)

余下的钱(余下一半钱的2倍)是: 1350×2=2700(元)

用同样道理可算出“存款的一半”和“原有存款”。综合算式是:

(1250+100)×2+50]×2=5500(元)

还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。

例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又

从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?

分析】我们得先算出最后哥哥、弟弟各挑多少块。只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。

提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。

对于一些比较复杂的还原问题,要学会列表,借助**倒推,既能理清数量关系,又便于验算。

奥赛专题 --鸡兔同笼问题

例1 鸡兔同笼,头共46,足共128,鸡兔各几只?

分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚。如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚。

那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了。所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?

28(只)

免有多少只?

46-28=18(只)

答:鸡有28只,免有18只。

例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差。这又如何解答呢?

假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只。因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡。每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只。

那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

解:(2×100-80)÷(2+4)=20(只)。

100-20=80(只)。

答:鸡与兔分别有80只和20只。

例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?

分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了。由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人。三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?

解法1: 一班:[135-5+(7-5)]÷3=132÷3

44(人)

二班:44+5=49(人)

三班:49-7=42(人)

答:三年级一班、 二班、三班分别有44人、 49人和 42人。

分析2] 假设。

一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人。这时的总人数又该是多少?

解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)

49-5=44(人),49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和42人。

例4 刘老师带了41名同学去北海公园划船,共租了10条船。每条大船坐6人,每条小船坐4人,问大船、小船各租几条?

分析] 我们分步来考虑:

假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。

假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。

解:[6×10-(41+1)÷(6-4)

18÷2=9(条) 10-9=1(条)

答:有9条小船,1条大船。

例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?

分析] 这是在鸡兔同笼基础上发展变化的问题。观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿。因此,可先从腿数入手,求出蜘蛛的只数。

我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的。所以,应有(118-108)÷(8-6)=5(只)蜘蛛。这样剩下的18-5=13(只)便是蜻蜓和蝉的只数。

再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).

解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?

6×18=108(条)

有蜘蛛多少只?

118-108)÷(8-6)=5(只)

蜻蜒、蝉共有多少只?

18-5=13(只)

假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)

蜻蜒多少只?

20-13)÷ 2-1)= 7(只)

答:蜻蜒有7只。

五六年级奥数试题

五 六年级奥数辅导试题。找规律填空。8 1头猪换2只羊,1只羊换2只兔子,1头猪换 只兔子。9 1个苹果 2个橘子,1个橘子 8颗糖 1个苹果可以换 颗糖 2个苹果可以换 颗糖 3个橘子可以换 颗糖 16颗糖可以换 个橘子 五 六年级奥数辅导试题。1 小红炒蛋需要做7项工作 敲蛋 1分 搅蛋 3分 ...

五六年级奥数试卷

奥数测试 5 6年级 1.烙熟一块饼需要4分钟,每面2分钟。一只锅只能同时烙2块饼,要烙3块饼,最少需要几分钟?2.5个人到水龙头接水,水龙头注满水瓶的时间分别是5分钟 3分钟 4分钟 2分钟 1分钟。现在只有一个水龙头可用。问怎样安排这5个人的接水次序,可使他们总的等候时间最短?这个最短时间是多少...

六年级英语阅读理解解题技巧

导语 阅读理解是英语学习的重要部分,对于学习英语的同学来。阅读理解解题技巧,欢迎大家参考!一 培养正确的阅读习惯。有许多孩子在长期的学习中往往形成了各种阅读习惯,如一个词。一个词地读,且常伴有一些习惯动作 用手指 摆头等,这就是速读的。障碍,并且可能影响到孩子一生的阅读。有些不良的习惯会影响到他们。...