年新课标I卷高考理科数学解答题 立体几何

发布 2020-05-20 10:21:28 阅读 6037

2013-2024年新课标i卷高考理科数学解答题。

立体几何(本小题满分12分)

1. 【2017,18】如图,在四棱锥p-abcd中,ab//cd,且。

(1)证明:平面pab⊥平面pad;

2)若pa=pd=ab=dc,,求二面角a-pb-c的余弦值.

1)证明:∵,

又∵,∴又∵,、平面。

平面,又平面。

平面平面。2)取中点,中点,连接,

四边形为平行四边形∴

由(1)知,平面。

平面,又、平面∴,

又∵,∴、、两两垂直。

以为坐标原点,建立如图所示的空间直角坐标系。

设,∴、设为平面的法向量。

由,得。令,则,,可得平面的一个法向量,∴

又知平面,平面,又。

平面。即是平面的一个法向量,

由图知二面角为钝角,所以它的余弦值为。

2016,18】 如图,在以为顶点的五面体中,面为正方形,,且二面角与二面角都是.

(ⅰ)证明:平面平面;

(ⅱ)求二面角的余弦值.

解析】: 为正方形,∴,

面,面,∴平面平面。

由知,,平面,平面。

平面,平面。

面面,∴四边形为等腰梯形。

以为原点,如图建立坐标系,设, ,设面法向量为,,即,,

设面法向量为,.即,设二面角的大小为。

二面角的余弦值为。

2015,18】如图,四边形为菱形,,是平面同一侧的两点,⊥平面,⊥平面,,.

)证明:平面⊥平面;

)求直线与直线所成角的余弦值.,∴eg⊥fg,ac∩fg=g,∴eg⊥平面afc,eg面aec,∴平面afc⊥平面aec. …6分。

2014,19】如图,三棱柱中,侧面为菱形,.

ⅰ)证明:;

ⅱ)若,, 求二面角的余弦值。

答案】(ⅰ详见解析;(ⅱ

解析】试题分析:(ⅰ由侧面为菱形得,结合得平面,故,且为的中点.故垂直平分线段,则;(ⅱ求二面角大小,可考虑借助空间直角坐标系.故结合已知条件寻找三条两两垂直相交的直线是解题关键.当且时,三角形为等腰直角三角形,故,结合已知条件可判断,故,从而两两垂直.故以为坐标原点,的方向为轴正方向建立空间直角坐标系,用坐标表示相关点的坐标.分别求半平面和的法向量,将求二面角问题转化为求法向量夹角处理.

试题解析:()连接,交于,连接.因为侧面为菱形,所以,且为与的中点.又,所以平面,故.又,故.

)因为,且为的中点,所以,又因为,.故,从而两两垂直.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.因为,所以为等边三角形.又,则,,,

设是平面的法向量,则即所以可取.

设是平面的法向量,则同理可取.

则.所以二面角的余弦值为.

考点定位】1、直线和平面垂直的判定和性质;2、二面角求法.

2013,18】如图,三棱柱abc-a1b1c1中,ca=cb,ab=aa1,∠baa1=60°.

1)证明:ab⊥a1c;

2)若平面abc⊥平面aa1b1b,ab=cb,求直线a1c与平面bb1c1c所成角的正弦值.

1)证明:取ab的中点o,连结oc,oa1,a1b.

因为ca=cb,所以oc⊥ab.

由于ab=aa1,∠baa1=60°,故△aa1b为等边三角形,所以oa1⊥ab.

因为oc∩oa1=o,所以ab⊥平面oa1c.

又a1c平面oa1c,故ab⊥a1c.

2)解:由(1)知oc⊥ab,oa1⊥ab.

又平面abc⊥平面aa1b1b,交线为ab,所以oc⊥平面aa1b1b,故oa,oa1,oc两两相互垂直.

以o为坐标原点,的方向为x轴的正方向,||为单位长,建立如图所示的空间直角坐标系o-xyz.

由题设知a(1,0,0),a1(0,,0),c(0,0,),b(-1,0,0).

则=(1,0,),1,,0),=0,,)

设n=(x,y,z)是平面bb1c1c的法向量,则即可取n=(,1,-1).

故cos〈n,〉=

所以a1c与平面bb1c1c所成角的正弦值为。

年新课标I卷高考理科数学解答题 导数及其应用

2013 2017年新课标i卷高考理科数学解答题。导数及其应用 本小题满分12分 2017,21 已知函数 1 讨论的单调性 2 若有两个零点,求的取值范围 1 由于。故当时,从而恒成立 在上单调递减当时,令,从而,得 综上,当时,在上单调递减 当时,在上单调递减,在上单调递增。2 由 1 知,当时...

年新课标I卷高考理科数学解答题 概率统计

概率统计 随机变量及其分布列本小题满分12分 2017全国1.理数。19 12分 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸 单位 cm 根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布 1 假设生产状态正常,记x表示一天...

年新课标I卷高考理科数学解答题 概率统计

2013 2017年新课标i卷高考理科数学解答题。概率统计 随机变量及其分布列本小题满分12分 2017全国1.理数。19 12分 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸 单位 cm 根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺...