2023年北京中考数学试卷 含答案

发布 2020-05-15 17:16:28 阅读 3163

2023年中考数学卷精析版——北京卷。

本试卷满分120分,考试时间120分钟)

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.

3.(2012北京市4分) 正十边形的每个外角等于【 】

abcd.答案】b。

考点】多边形外角性质。

分析】根据外角和等于3600的性质,得正十边形的每个外角等于3600÷10=360。故选b。

4.(2012北京市4分)下图是某个几何体的三视图,该几何体是【 】

a.长方体 b.正方体 c.圆柱 d.三棱柱。

答案】d。考点】由三视图判断几何体。

分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。故选d。

5.(2012北京市4分) 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖。

给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通。

票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是【 】

abcd.答案】b。

考点】概率。

分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。本题全部等可能情况的总数6,取到科普读物的情况是2。

∴取到科普读物的概率是。故选b。

6.(2012北京市4分)如图,直线ab,cd交于点o,射线om平分∠aod,若∠bod=760,则∠bom

等于【 】abcd.

答案】c。考点】角平分线定义,对顶角的性质,补角的定义。

分析】由∠bod=760,根据对顶角相等的性质,得∠aoc=760,根据补角的定义,得∠boc=1040。

由射线om平分∠aod,根据角平分线定义,∠com=380。

bom=∠com+∠boc=1420。故选c。

7.(2012北京市4分) 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:

则这20户家庭该月用电量的众数和中位数分别是【 】

a.180,160b.160,180c.160,160d.180,180

答案】a。考点】众数,中位数。

分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是180,故这组数据的众数为180。

中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为120,120,140,140,140,160,160,160,160,160,160,180,180,180,180,180,180,180,200,200,∴中位数是第10和11个平均数,它们都是160,故这组数据的中位数为160。

故选a。8.(2012北京市4分) 小翔在如图1所示的场地上匀速跑步,他从点a出发,沿箭头所示方向经过点b

跑到点c,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单。

位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定。

位置可能是图1中的【 】

a.点mb.点nc.点pd.点q

答案】d。考点】动点问题的函数图象。

分析】分别在点m、n、p、q的位置,结合函数图象进行判断,利用排除法即可得出答案:

a、在点m位置,则从a至b这段时间内,弧上每一点与点m的距离相等,即y不随时间的变化改变,与函数图象不符,故本选项错误;

b、在点n位置,则根据矩形的性质和勾股定理,na=nb=nc,且最大,与函数图象不符,故本选项错误;

c、在点p位置,则pc最短,与函数图象不符,故本选项错误;

d、在点p位置,如图所示,①以q为圆心,qa为半径画圆交于点e,其中y最大的点是ae的中垂线与弧的交点h;②在弧上,从点e到点c上,y逐渐减小;③qb=qc,即,且bc的中垂线qn与bc的交点f是y的最小值点。经判断点q符合函数图象,故本选项正确。

故选d。二、填空题(本题共16分,每小题4分)

9.(2012北京市4分) 分解因式。

答案】。考点】提公因式法和应用公式法因式分解。

分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式。因此,。

10.(2012北京市4分)若关于的方程有两个相等的实数根,则的值是 ▲

答案】-1。

考点】一元二次方程根的判别。

分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可:

∵关于x的方程x2-2x-m=0有两个相等的实数根,∴△0,(-2)2-4×1×(-m)=0,解得m=-1。

11.(2012北京市4分)如图,小明同学用自制的直角三角形纸板def测量树的高度ab,他调整自己的。

位置,设法使斜边df保持水平,并且边de与点b在同一直线上.已知纸板的两条直角边de=40cm,ef=20cm,测得边df离地面的高度ac=1.5 m,cd=8 m,则树高ab

答案】5.5。

考点】相似三角形的判定和性质。

分析】利用rt△def和rt△bcd相似求得bc的长后加上小明同学的身高即可求得树高ab:

∠def=∠bcd=90°,∠d=∠d,∴△def∽△dcb。∴。

de=40cm=0.4m,ef=20cm=0.2m,ac=1.5m,cd=8m,∴。bc=4(m)。

ab=ac+bc=1.5+4=5.5(m)。

12.(2012北京市4分)在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点.已知点。

a(0,4),点b是轴正半轴上的整点,记△aob内部(不包括边界)的整点个数为m.当m=3时,点。

b的横坐标的所有可能值是 ▲ 当点b的横坐标为4n(n为正整数)时,m用含n

的代数式表示.)

答案】3或4;6n-3。

考点】分类归纳(图形的变化类),点的坐标,矩形的性质。

分析】根据题意画出图形,再找出点b的横坐标与△aob内部(不包括边界)的整点m之间的关系即可求出答案:

如图:当点b在(3,0)点或(4,0)点时,△aob内部(不包括边界)的整点为(1,1),1,2),(2,1),共三个点,∴当m=3时,点b的横坐标的所有可能值是3或4。

当点b的横坐标为4n(n为正整数)时,以ob为长oa为宽的矩形内(不包括边界)的整点个数为(4n-1)×3=12 n-3,对角线ab上的整点个数总为3,△aob内部(不包括边界)的整点个数m=(12 n-3-3)÷2=6n-3。

三、解答题(本题共30分,每小题5分)

13.(2012北京市5分)计算:.

答案】解:原式=。

考点】实数的运算,零指数幂,算术平方根,特殊角的三角函数值,负整数指数幂。

分析】针对零指数幂,算术平方根,特殊角的三角函数值,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果。

16.(2012北京市5分)已知:如图,点e,a,c在同一条直线上,ab∥cd,ab=ce,ac=cd.

求证:bc=ed.

答案】证明:∵ab∥cd,∴∠bac=∠ecd,在△bac和△ecd中,ab=ec,∠bac=∠ecd ,ac=cd,△bac≌△ecd(sas)。∴cb=ed。

考点】平行线的性质,全等三角形的判定和性质。

分析】首先由ab∥cd,根据平行线的性质可得∠bac=∠ecd,再由条件ab=ce,ac=cd可证出△bac和△ecd全等,再根据全等三角形对应边相等证出cb=ed。

17.(2012北京市5分)如图,在平面直角坐标系xoy中,函数的图象与一次函数y=kx-k的。

图象的交点为a(m,2).

(1)求一次函数的解析式;

(2)设一次函数y=kx-k的图象与y轴交于点b,若p是x轴上一点, 且满足△pab的面积是4,直接写出点p的坐标.

答案】解:(1)将a(m,2)代入得,m=2,则a点坐标为a(2,2)。

将a(2,2)代入y=kx-k得,2k-k=2,解得k=2。

一次函数解析式为y=2x-2。

考点】反比例函数与一次函数的交点问题,曲线上点的坐标与方程的关系。

分析】(1)将a点坐标代入求出m的值为2,再将(2,2)代入y=kx-k,求出k的值,即可得到一次函数的解析式。

2)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加:

一次函数y=2x-2与x轴的交点为c(1,0),与y轴的交点为b(0,-2),,解得cp=2。

p点坐标为(3,0),(1,0)。

18.(2012北京市5分)列方程或方程组解应用题:

据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.

答案】解:设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:,解得:x=22。

经检验:x=22是原分式方程的解。

答:一片国槐树叶一年的平均滞尘量为22毫克。

考点】分式方程的应用。

分析】设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,根据关键语句“若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,”可得方程,解方程即可得到答案。注意最后一定要检验。

四、解答题(本题共20分,每小题5分)

19.(2012北京市5分)如图,在四边形abcd中,对角线ac,bd交于点e,∠bac=900,∠ced=450,∠dce=900,de=,be=2.求cd的长和四边形abcd的面积.

2023年北京中考数学试卷

数学试卷。学校姓名准考证号。一。6 如图,直线,交于点,射线平分,若,则等于。abcd 7 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示 则这20户家庭该月用电量的众数和中位数分别是。a 180,160b 160,180c 160,160d 180,180 8 小翔在如...

2023年广东省广州市中考数学试卷 含答案 附试题评析

a 5b 6 c 7d 8 8 已知,则a2 b2 2b的值为 a 4b 3c 1d 0 9 如图,在 abc中,d,e分别是边ac,ab的中点,连接bd 若bd平分 abc,则下列结论错误的是 a bc 2be b a eda c bc 2ad d bd ac 10 如图,在梯形abcd中,ab ...

2019北京中考数学试卷分析

学校姓名准考证号。一 选择题 本题共32分,每小题4分 下面各题均有四个选项,其中只有一个是符合题意的。1 的绝对值是。abcd 考点 绝对值。点评 本题延续了北京中考第1题的风格 一般会是倒数,相反数 绝对值等几个考点。难点很小,旨在让学生第一题都拿分,让学生轻松的进入考试。2 我国第六次全国人口...