奥数六年级找规律

发布 2020-03-28 06:34:28 阅读 4626

小学六年级奥数教案—16找规律。

找规律。同学们从三年级开始,就陆续接触过许多“找规律”的题目,例如发现图形、数字或数表的变化规律,发现数列的变化规律,发现周期变化规律等等。这一讲的内容是通过发现某一问题的规律,推导出该问题的计算公式。

例1 求99边形的内角和。

分析与解:三角形的内角和等于180°,可是99边形的内角和怎样求呢?我们把问题简化一下,先求四边形、五边形、六边形……的内角和,找一找其中的规律。

如上图所示,将四边形abcd分成两个三角形,每个三角形的内角和等于180°,所以四边形的内角和等于180°×2= 360°;同理,将五边形abcde分成三个三角形,得到五边形的内角和等于180°×3=540°;将六边形abcdef分成四个三角形,得到六边形的内角和等于180°×4=720°。

通过上面的图形及分析可以发现,多边形被分成的三角形数,等于边数减2。由此得到多边形的内角和公式:

n边形的内角和=180°×(n-2)(n≥3)。

有了这个公式,再求99边形的内角和就太容易了。

99边形的内角和=180°×(99-2)=17460°。

例2 四边形内有10个点,以四边形的4个顶点和这10个点为三角形的顶点,最多能剪出多少个小三角形?

分析与解:在10个点中任取一点a,连结a与四边形的四个顶点,构成4个三角形。再在剩下的9个点中任取一点b。

如果b在某个三角形中,那么连结b与b所在的三角形的三个顶点,此时三角形总数增加2个(见左下图)。如果b在某两个三角形的公共边上,那么连结b与b所在边相对的顶点,此时三角形总数也是增加2个(见右下图)。

类似地,每增加一个点增加2个三角形。

所以,共可剪出三角形 4+ 2× 9= 22(个)。

如果将例2的“10个点”改为n个点,其它条件不变,那么由以上的分析可知,最多能剪出三角形。

4+2×(n-1)=2n+2=2×(n+1)(个)。

同学们都知道圆柱体,如果将圆柱体的底面换成三角形,那么便得到了三棱柱(左下图);同理可以得到四棱柱(下中图),五棱柱(右下图)。

如果底面是正三角形、正四边形、正五边形……那么相应的柱体就是正三棱柱、正四棱柱、正五棱柱……

例3 n棱柱有多少条棱?如果将不相交的两条棱称为一对,那么n棱柱共有多少对不相交的棱?

分析与解:n棱柱的底面和顶面都是n边形,每个n边形有n个顶点,所以n棱柱共有2n个顶点。观察三棱柱、四棱柱、五棱柱的图形,可以看出,每个顶点都与三条棱相连,而每条棱连接 2个顶点,所以n棱柱共有棱 2n×3÷2=3n(条)。

进一步观察可以发现,n棱柱中每条棱都与4条棱相交,与其余的3n-4-1 =(3n-5)条棱不相交。共有3n条棱,所以不相交的棱有 3n×(3n- 5)(条),因为不相交的棱是成对出现的,各计算一遍就重复了一遍,所以不相交的棱共有。

3n×(3n-5)÷2(对)。

例4 用四条直线最多能将一个圆分成几块?用100条直线呢?

分析与解:4条直线时,我们可以试着画,100条直线就不可能再画了,所以必须寻找到规律。如下图所示,一个圆是1块;1条直线将圆分为2块,即增加了1块;2条直线时,当2条直线不相交时,增加了1块,当2条直线相交时,增加了2块。

由此看出,要想分成的块尽量多,应当使后画的直线尽量与前面已画的直线相交。

再画第3条直线时,应当与前面2条直线都相交,这样又增加了3块(见左下图);画第4条直线时,应当与前面3条直线都相交,这样又增加了4块(见右下图)。所以4条直线最多将一个圆分成1+1+2+3+4=11(块)。

由上面的分析可以看出,画第n条直线时应当与前面已画的(n—1)条直线都相交,此时将增加n块。因为一开始的圆算1块,所以n条直线最多将圆分成。

1+(1+2+3+…+n)

=1+n(n+1)÷2(块)。

当n=100时,可分成。

1+100×(100+1)÷2=5051(块)。

例5 用3个三角形最多可以把平面分成几部分?10个三角形呢?

分析与解:平面本身是1部分。一个三角形将平面分成三角形内、外2部分,即增加了1部分。两个三角形不相交时将平面分成3部分,相交时,交点越多分成的部分越多(见下图)。

由上图看出,新增加的部分数与增加的交点数相同。所以,再画第3个三角形时,应使每条边的交点尽量多。对于每个三角形,因为1条直线最多与三角形的两条边相交,所以第3个三角形的每条边最多与前面2个三角形的各两条边相交,共可产生3×(2×2)= 12(个)交点,即增加12部分。

因此, 3个三角形最多可以把平面分成。

1+1+6+12= 20(部分)。

由上面的分析,当画第n(n≥2)个三角形时,每条边最多与前面已画的(n—1)个三角形的各两条边相交,共可产生交点。

3×[(n—l)×2]=6(n—1)(个),能新增加6(n-1)部分。因为1个三角形时有2部分,所以n个三角形最多将平面分成的部分数是。

2+6×[1+2+…+n—1)]

当n=10时,可分成2+3×10×(10—1)=272(部分)。

练习161.求12边形的内角和。

2.五边形内有8个点。以五边形的5个顶点和这8个点为三角形的顶点,最多能剪出多少个小三角形?

3.已知n棱柱有14个顶点,那么,它有多少条棱?

条直线最多有多少个交点?

5.6条直线与2个圆最多形成多少个交点?

6.两个四边形最多把平面分成几部分?

答案与提示练习16

2.19个。

提示:与例2类似可得5+2×(8-1)=19(个)。

3.21条棱。提示:n棱柱有2n个顶点,3n条棱。

解:1+2+3+…+n-1)=n(n-1)÷2。

5.41个。

解:6条直线有交点6×(6-1)÷2=15(个),每条直线与两个圆各有2个交点,两个圆之间有2个交点,共有交点15+6×4+2=41(个)。

6.10部分。

提示:见右图。与例5类似,当画第n(n≥2)个四边形时,每条边应与已画的(n-1)个四边形的各2条边相交,共可产生交点。

4×[(n-1)×2]=8(n-1)(个),新增加8(n-1)部分。因为1个四边形有2部分,所以n个四边形最多将平面分成2+8×[1+2+…+n-1)]=2+4n(n-1)(部分)。

六年级数奥找规律

找规律。例1 里上 中 下列为一组,第一组是 a,北,2 第二组是 b,京,0 那么第88组是什么?例2 2009年的1月1日是星期四,不看日历你能很快知道2009年的教师节 9月10日 是星期几吗?例3 甲在3月上旬过生日,乙在4月下旬过生日,他俩的生日日期数和和是31。已知甲 乙今年的生日都是星...

四年级奥数找规律

第一节 奥数找规律。一 知识综述。一 简单数列的规律。找规律填数是指给定一列数,这列数按照某种规律排列起来,其中留有部分空缺。只要从连续的几个数中找规律,那么就可以知道其余所有的数,从而把题目中给定的空缺补充完整。寻找数列的排列规律,除了从相邻两个数的和 差考虑外,有时还可以从积和商来考虑。解决这类...

三年级奥数找规律

三年级奥数 找规律填数。准备题 观察下面各数有什么规律?小知识 认识数列和项。按照一定次序排列起来的一列数,叫做数列。在一个数列中,从左往右的第几个数,叫做这个数列的第几项。例一 指出下面数列的规律,并在 里填上适当的数。从不同的角度观察相同的数列,会找到不同的规律 试一试 例二 找规律填空。试一试...