1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?
2.光明小学。
四、五、六年级共订300份报纸,每个年级至少订99份报纸。问:共有多少种不同的订法?
3.将10颗相同的珠子分成三份,共有多少种不同的分法?
4.在所有的两位数中,两位数码之和是偶数的共有多少个?
5.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?
6.下图中每个小方格的边长都是1。有一只小虫从o点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线。
ab上的不同爬行路线有多少条?
四年级奥数-加法原理b
7.如下图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?
8.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?
9.如下图中,沿线段从点a走最短的路线到b,各有多少种走法?
10.在1~1000的自然数中,一共有多少个数字0?
11.在1~500的自然数中,不含数字0和1的数有多少个?
12.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?
四年级奥数-加法原理ab答案。
1.38种。
2.10种。
提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法。
3.8种。4.45个。提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个)。
5.21个。提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种。
6.10条。
提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条。7.3×3+2×4=17(种).
8.6+7+15+21+6×7=91(种).
提示:拿两本的情况分为2本画报或2本书或一本画报一本书.9.(1)6;(2)10;(3)20;(4)35.
10.9+180+3=192(个).11.8+8×8+3×8×8=264(个).
12.9+8+7+6+5+4+3+2+1=45(次).
我们通常解题,总是要先列出算式,然后求解。可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式。这一讲我们介绍利用加法原理在“图上作业”的解题方法。
四年级奥数 加法原理
第11讲加法原理 二 我们通常解题,总是要先列出算式,然后求解。可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式。这一讲我们介绍利用加法原理在 图上作业 的解题方法。例题讲解 例1小明要登上10级台阶,他每一步只能登1级或2级台阶,他登上10级台阶共有多少种不同的登法?分析与解 登上第1...
四年级奥数加法原理习题
导读 本文。第一篇 第二篇 1 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问 一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?分析与解 一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有 4 3 ...
小学四年级奥数加法原理和乘法原理
加法原理和乘法原理。例2 例1 海海有红 黄 蓝三件上衣和绿 白两条裤子。请问他从上衣和裤子中各选一件,有多少种不同的搭配方法?1 题库中有三种类型的题目,数量分别为30道 40道和45道,每次考试。要从三种类型的题目中各取一道组成一张试卷。问 由该题库共可组成多少种不同的试卷?2 在图中,一只甲虫...