四年级校本课程教案

发布 2020-03-19 18:30:28 阅读 5119

学习好资料欢迎**。

课程名称:《差倍问题》

课程类型:学科拓展类(必修)课程资源:选编开发人:闫世建学习对象:四年级。

差倍问题。知识点:已知大小两个数的差,还知道大数是小数的几倍,求大小两个数各是多少的应用题,叫做差倍问题。

差倍问题也是一种典型的应用题。解答差倍问题与解答和倍问题的方法类似,我们仍然用画线段图的方法来帮助分析、思考。我们可以通过分析数量关系,发现条件和问题之间的内在联系,找出解题的规律,正确列式解答。

例1、小红买的兰花比月季多12朵,已知兰花的朵数是月季的3倍。小红买了兰花和月季各多少朵?分析:

先画出线段图。

想一想:兰花比月季多几倍?兰花比月季多的12朵就是月季的几倍?(1)兰花比月季多几倍?(2)月季有多少朵?(3)兰花有多少朵?

从例1可以发现,解答差倍问题的关键是,运用线段图帮助我们分析,找出两个数的差以及与它相对应的倍数数,从而先求出1倍数,再求出其他数。差倍问题的基本数量关系式是:

两数差÷(倍数-1)=1倍数(小数)1倍数×倍数=几倍数(大数)

从上面可以看出,要解答差倍问题必须要知道两个数的“差”及它们之间的“倍数”。

例2、甲、乙两个粮仓各存粮若干吨,甲仓存粮的吨数是乙的3倍。如果甲仓中取出260吨,乙仓中取出60吨,则甲、乙两个粮仓存粮的吨数相等。甲、乙两个粮仓各存粮多少吨?

分析:先画出线段图。

想一想:甲仓存粮的吨数比乙仓多多少吨?甲仓存粮的吨数比乙仓多多少倍?

(1)甲仓比乙仓多存粮多少吨?(2)甲仓比乙仓多存粮多少倍?(3)乙仓存粮多少吨?

(4)甲仓存粮多少吨?

例3、水果店运来的苹果比香蕉多15筐,已知苹果的筐数比香蕉的4倍还多3筐。水果店运来的苹果和香蕉各多少筐?

分析:先画出线段图表示题意。

想一想:如果苹果减少3筐,那么苹果比香蕉多多少筐?苹果的筐数比香蕉多多少倍?

(1)如果苹果减少3筐,那么苹果比香蕉多多少筐?(2)此时苹果的筐数比香蕉多多少倍?(3)运来香蕉多少筐?

(4)运来苹果多少筐?

学习好资料欢迎**。

课程名称:《相遇问题二次相遇》课程类型:学科拓展类(必修)课程资源:选编开发人:闫世建学习对象:四年级。

相遇问题二次相遇。

例1:甲、乙两车从a、b两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行45千米,,两车第一次相遇后仍以原速继续前进,并在到达对方出发地后,都立即沿原速返回,两车从开始到第二次相遇共用了6小时。两地之间的距离相距多少千米?

思路点拨:甲、乙两车从开始出发到第一次相遇共同行完一个a、b间的路程,第一次相遇后继续前进,各自到b、a两地后,又共同行驶了一个a、b间的路程,当甲、乙两车第二次相遇时,又共同行驶了一个a、b间的路程,所以甲、乙两车从开始到第二次相遇,6小时甲、乙两车共同行驶a、b路程的3倍。40+45=85(千米)85×6=510(千米)510÷3=170(千米)

答:两地之间的距离相距170千米。

例2:甲、乙两车从a、b两地同时出发,相向而行,第一次两车在距a地75千米处相遇,然后两车仍以原速继续前进,并在到达对方出发地后,都立即沿原速返回,途中两车在距b地55千米处第二次相遇。ab地相距多少千米?

思路点拨:甲、乙两车从开始出发到第一次相遇共同行完一个a、b的路程,其中甲走了75千米。从出发到第二次相遇,甲、乙共走了三个a、b的路程,其中甲走了75×3=225千米,在225千米中又包括甲从b地返回所走的55千米,因此225千米减去55千米便是a、b之间的路。

75×3=225(千米)225-55=170(千米)答:a、b两地相距170千米。

练习:甲、乙两辆汽车同时从a、b两站相向开出,两车第一次在距a站32千米处相遇,相遇后继续前进,分别到达b、a两站后立即返回,第二次在距a站64千米处相遇。求a、b两站间的距离。

(80千米)

甲、乙两车同时从a、b两地出发相向而行,第一次相遇离b地64千米,第二次相遇离a地48千米,①求全长②求两次相遇点相距多少千米?

考虑乙走的:一个全程+48第一次相遇:乙走64千米第一次到第二次相遇:

乙又走64×2=128千米乙共走64×3=192千米全程长:192-48=144千米两次相遇点相距:①64×2-48×2=32千米②144-48-64=32千米。

环形跑道问题。

例3:一个圆形操场跑道周长是1200米,两个同学同时同地相背而行,甲每小时走62米,乙每分钟走58米,几分钟后两人相遇?

思路点拨:两人所走的路程和为圆形操场跑道周长,两人的速度多是已知的,可求出速度和,62+58=120(米)1200÷120=10(分钟)答:10分钟后两人相遇。

学习好资料欢迎**。

课程名称:《小数简便运算》课程资源:选编开发人:闫世建学习对象:四年级。

教学过程:一:提出问题。

1、谈话导入:最近我们一直在学习有关小数的计算问题。下面进行几轮计算比赛。第一轮:看谁算得对。

10×1.30.32×10024+0.

243.2×0.615-0.

151.9×0.020.

4×0.51.25×82.

5×40.24×4200×0.160.

6×0.1第二轮:看谁算得巧。

25×73×432×10376×8+2×76让学生说说是怎么算的,运用了哪些运算律。

教师小结:在整数乘法中,我们运用乘法的一些运算律,可以使计算简便。2、提出问题:整数乘法中的运算律,对小数乘法是否适用呢?学生猜想。二、观察验证。

1、教师提出验证要求:同学们的猜想是否成立呢,需要我们举例来验证。出示几组算式,提出要求:

先算一算,下面的○里能填上等号吗?0.8×1.

3○1.3×0.8

1)学生计算,汇报结果,发现每组的两个算式结果相等,可以用等号连接。(2)观察每组的两个算式有什么关系?

学生发现:第一组两个算式中,两个小数相乘,交换两个因数的位置,结果相等,符合乘法交换律。第二组的两个算式中都是三个小数相乘,左边先把前两个小数相乘,再乘第三个小数,右边先把后两个小数相乘,再和第一个小数相乘,结果相等,符合乘法结合律。

第三组左边是把两个数的和乘一个数,右边是把这两个数分别乘以这个数,再把两个积相加,结果也相等,符合乘法分配律。

3)乘法的这些运算律是否在小数乘法中普遍适用呢,小组合作,再例举几组有这样关系的算式,通过计算来验证一下。

4)交流发现:整数乘法的运算律,对小数乘法也同样适用。

5)揭示课题:今天这节课我们就来研究“乘法运算律的推广和运用”。

设计意图:让学生充分经历观察、举例、再观察、发现的验证的过程,不但使学生经历形成数学知识的过程,,还能使学生感受到数学结论的科学性和严密性,培养学生严谨的认知态度。)三、实际运用。

1、谈话:乘法的这些运算律在小数乘法中有什么用呢?2、试一试:下面各题怎样计算比较简便?0.25×0.73×40.32×403(1)学生尝试计算。

2)交流计算方法,让学生说说运用了什么运算律。0.25×0.73×40.32×403

0.25×4×0.73 ..乘法交换律结合律= 0.32×(400+3)

1×0.73= 0.32×400+0.32×3.乘法分配律=0.73=128+0.96= 128.96

3)教师小结:看到算式,首先要观察数据特点,再根据数据和算式特点,合理运用乘法运算律,使计算简便。

学习好资料欢迎**。

3、练一练:用简便方法计算。7.6×0.8+0.2×7.60.25×360.85×199(1)学生尝试计算。

2)交流计算方法。让学生说说是怎样运用运算律进行简算的。3、运用乘法交换律,还可以对小数乘法进行验算。完成练一练第2题。四、全课小结。

四年级校本课程教案

课程名称 差倍问题 课程类型 学科拓展类 必修 课程资源 选编。开发人 闫世建。学习对象 四年级。差倍问题。知识点 已知大小两个数的差,还知道大数是小数的几倍,求大小两个数各是多少的应用题,叫做差倍问题。差倍问题也是一种典型的应用题。解答差倍问题与解答和倍问题的方法类似,我们仍然用画线段图的方法来帮...

四年级校本课程教案 审

四年级校本课程教学计划。一 指导思想 课程结构决定着学生的素质结构。学校校本课程必须以促进学生全面发展为目的,以培养学生的创新精神和实践能力为重点,辩证处理好社会需要。人格是做人的资格,就是人之成为人的品格和起码应具有的权利和义务。校本课程是充分发挥学校及周围的资源优势,挖掘课程资源,满足不同年龄学...

四年级校本课程教案 审

四年级校本课程教学计划。一 指导思想 课程结构决定着学生的素质结构。学校校本课程必须以促进学生全面发展为目的,以培养学生的创新精神和实践能力为重点,辩证处理好社会需要。人格是做人的资格,就是人之成为人的品格和起码应具有的权利和义务。校本课程是充分发挥学校及周围的资源优势,挖掘课程资源,满足不同年龄学...