初中数学八年级上册教材分析

发布 2022-12-25 14:30:28 阅读 4400

一、教材总体思路分析。

1.本册书的主要内容有:实数、一次函数、二元一次方程组;勾股定理、图形的平移与旋转、四边形、位置的确定;数据的代表。

其中无理数的发现、实数系统的建立和函数概念是本学段知识的重点也是和难点,实数是进一步学习的基础;而函数以及函数思想与其他知识的广泛联系也是重心之一。

勾股定理及其逆定理是初等几何中最基本、最重要的定理之一。通过拼、摆或图形的割、补,使得这一重要几何事实得以确认。由于发现及证实它成立的方式非常多且富于变化,因此对学生有很大的吸引力。

《图形的平移与旋转》是新增加的内容,通过学习,可以把静止的图形看成是基本图形经过位移而得到,提供了对复杂图形进行分析的新视角,还可以对“几何变换”有直观的感受。

位置的确定》从源头上突出了坐标法产生的思想,直角坐标系是实现坐标法的一种选择,建立坐标系把数轴拓展到平面,是数形结合与转化的桥梁。“变化的鱼”以直观生动的形式加强了几何变换与坐标表示及坐标变化联系起来,从数与形两个方面感受图形变化的数学内涵。

在统计与概率领域,本册提供了刻画数据平均水平的三种量度,力图让学生掌握一定的数据分析的方法,更好地处理数据。

2.教材设计与内容的组织有如下考虑。

1)无理数的发现可以从理论的角度引发,出现在勾股定理之前。教科书遵循了人类认识数学的历史顺序,把勾股定理放在实数学习的前面,成为发现无理数的直观背景,自然地表明无理数存在的客观性,同时对无理数研究的必要性作出合理的解释。实数集中的实数与数轴上的点一一对应并不像想像的那样容易被学生接受,说服的办法也是借助几何解释和理性思考。

这样处理须注意在学习勾股定理时,边长的数据应暂时在有理数范围内选取,在此两章学完之后,可以回过头来在实数范围内重新讨论勾股定理及其应用。在我们讨论一。

个平方等于2的数时,发现它是一个无限不循环小数,进一步引出无理数的定义。

无理数概念的产生,同时也是对有理数概念的强调,应重视在现实背景中对实数运算意义的理解和应用,加强对估算的要求。

2)先研究图形的平移和旋转,再进行四边形性质的探索,这样几何变换就不仅仅是一个具体的知识点,而且作为一个工具去研究几何图形(如平行四边形)的性质,增加了一个考察问题的视角。在《图形的平移与旋转》一章中,通过观察和归纳,概括出变换的概念;通过操作和思考,探索出变换的相关性质;通过作图和图案设计体察复杂图形中部分与整体之间的关系;在下一章中通过探索四边形的性质加深对变换自身的理解,逐步形成结构性认识。教学中突出其方法特性,充分发挥其数学教育价值。

(3)一次函数的学习放在二元一次方程组的前面,有两个好处:首先,可以使得学生有机会尝试借助图象研究函数特征的过程,以加深对函数意义的理解;其次,用函数的观点来认识和考察二元一次方程(方程组),给出方程的一种直观解释,而且从方法的角度更具有一般性和启发性,也体现了函数的运用。

教材中介绍了二元一次方程组的图象解法,其主要价值不在于得到方程组的近似解,图象解法从整体上展示了方程组及其解的几何意义,揭示了图象方法的作用,这种思想方法对以后的高次方程、无理方程、超越方程及其解,求近似解以及求解不等式等方面有广泛应用。教学中在学完这两章后应组织学生认真思考与总结。

初中数学八年级上册《勾股定理》教材分析

北师大版初中数学八年级上册 勾股定理 教材分析本章主要研究勾股定理与其逆定理,包括它们的发现 证明和应用。首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题 逆定理的...

初中数学八年级上册《勾股定理》教材分析

北师大版初中数学八年级上册 勾股定理 教材分析。本章主要研究勾股定理与其逆定理,包括它们的发现 证明和应用。首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题 逆定理...

初中物理八年级上册教材分析

一 新课程教科书的特点 一 从学生爱好 认知规律和 的方便出发,设计教材结构。二 注重 活动,提倡学习方法多样化。三 形式生动活泼,激发学生的学习爱好。四 联系实际,贴近生活。五 留意学科间的综合,扩大学生的知识面。二 教材内在结构的意义 新课程标准中的课程目标与义务教育大纲中的教学目标相比,不仅有...