习题2.1
某厂利用a、b两种原料生产甲、乙、丙三种产品,已知单位产品所需的原料、利润及有关数据如表2—3所示。
表2—3两种原料生产三种产品的有关数据。
请分别回答下列问题:
1) 求使该厂获利最大的生产计划。
2) 若产品乙、丙的单位利润不变,当产品甲的单位利润在什么范围内变化时,最优解不变?
3) 若原料a市场紧缺,除拥有量外一时无法购进,而原料b如数量不足可去市场购买,单价为0.5,问该厂是否应该购买,且以购进多少为宜?
解:(1)设产品甲的产量为x1,产品乙的产量为x2,产品丙的产量为x3.
目标函数为:maxz=4 x1 + x2+5 x3
约束条件:
该线性规划模型为:
答:该厂获利最大的生产计划为产品甲产量为5,产品乙产量为0,产品丙产量为3,总利润为35。
2)敏感性报告为:
答:如数据显示,产品甲的单位利润变化范围为:。
3)敏感性报告为:
由敏感性报告显示原料b允许的增量为15,其影子**为0.667,又因为市场上原料b单价为0.5,此时,总利润为37.5。
答:该厂可购买15。
习题2.3已知某工厂计划生产三种产品,各产品需要在设备a、b、c上加工,有关数据如表2—5所示。
表2—5 生产三种产品的有关数据。
请分别回答下列问题:
1) 如何充分发挥设备能力,才能使生产盈利最大?
2) 为了增加产量,可借用其他工厂的设备b,若每月可借用60台时,租金为1.8万元,问借用设备b是否合算?
3) 若另有两种新产品(产品4和产品5),其中生产每件新产品4需用设备a、b、c各台时,单位赢利2.1千元;生产每件新产品5需用设备a、b、c各台时,单位赢利1.87千元。
如果设备a、b、c台时不增加,分别回答这两种新产品的投资在经济上是否合算?
4) 对产品工艺重新进行设计,改进构造。改进后生产每件产品1,需用设备a、b、c各台时,单位赢利4.5千元,问这对原生产计划有何影响?
解:(1)设每月产品a的产量为x1,产品b的产量为x2,产品c的产量为x3。
目标函数:maxz=3x1+2x2+2.9x3
约束条件:
该线性规划模型为:
答:当产品1的产量为22,产品2的产量为23,产品3的产量为7时,工厂盈利最大,最大为13.5万元。
2)其敏感性报告为:
其线性规划模型为:
答:不合算,由敏感性报告显示,借用66台设备b超出设备b每月设备使用台时允许的增量44台;由线性规划模型显示,当设备b增加60时,总利润为14.7-1.
8=12.9万元,所以不合算。
4) 该线性规划模型为:
答:如线性规划模型所示,产品4的投资在经济上不合算,产品5的投资在经济上合算。
5) 该线性规划模型为:
答:如线性规划模型所示,当盈利最大时,产品3没有产量,总利润提高约1.8万元。
运筹学第二章
第 2 次课 2学时。本次课教学重点 线型规划模型有关概念 法求解线型规划模型。本次课教学难点 线型规划模型有关概念 各种解的情况分析。本次课教学内容 第二章线性规划的 法。第一节问题的提出。一 引例。例1.某工厂在计划期内要安排 两种产品的生产,已知生产单位产品所需的设备台时及a b两种原材料的消...
运筹学第二章答案
1 某人根据医嘱,每天需补充a b c三种营养,a不少于80单位,b不少于150单位,c不少于180单位 此人准备每天从六种食物中摄取这三种营养成分 已知六种食物每百克的营养成分含量及食物 如表2 22所示 1 试建立此人在满足健康需要的基础上花费最少的数学模型 2 假定有一个厂商计划生产一中药丸,...
第二章习题运筹学汇总
第二章习题。12 对于下面的线性规划问题,以为基写出相对应的典式。解 由题可以知 取一个基,即 且。在matlab中可以计算得到 由可得典式的目标函数 由可得 由此与题中线性规划问题相对应的典式为 14 用单纯形法求解线面的线性规划问题,并在平面上画出迭代点走过的路线。解 由题先将题中线性规划问题化...