初三数学教学设计案例 频率与概率

发布 2022-07-10 03:14:28 阅读 1337

频率与概率》

教学设计者:

学科:数学年级:九年级实验区:青岛。

课题名称:§6.1 频率与概率。

教材所在页。

一、简介。1、 北师大版九年级数学第六章第一节《频率与概率》是一个趣味性较强的课题,它通过简单的实验教会学生如何从实践中发现事物的内在规律。

2、 过《频率与概率》教学,让学生通过实验,理解当实验次数较大时实验频率稳定于理论概率,并可据此估计某一事件发生的概率。

关键信息:频率与概率》充分体现了新教材的重要特点,具有高度的拓展性、开发性和探索性。课前要求学生了解生活中关于概率的现象如彩票等;课堂中给予学生充分的参与和讨论,提倡自主学习、合作学习和**学习,通过实践让学生总结出频率和概率之间的关系,结合生活中看到的种种自然现象让学生在一种趣味的学习环境中体会数形结合的思想方法;课后让学生到生活中寻找更多的与概率有关的生活现象,将概率的思想方法运用到生活中去,进一步强调课堂与生活的联系,突显数学教学的育人价值。

二、学习者分析:

1、学生的年龄特点和认知特点。

八年级的学生正处在探索社会、探索人生的阶段,这个年龄段的学生非常喜欢探索未知的领域,对自然规律充满了新奇,喜欢接触新事物,学生潜能的唤醒、开掘与提升正处于重要阶段,但学生很少能看到事物的本质,很少能从事物的表面现象提炼出规律性的东西,这就需要教师正确的引导和启发。我们在提出问题时要找到很好的切入点,要引起学生好奇的兴趣,主动想**,想参与到课堂教学中去,通过自己的观察、研究,总结出自然规律,从而通过特殊案理了解自然存在的普遍现象,将数学的思维方式运用到生活中去,用数学的方式思考,使学生更成熟、更理性。

2、 习者在学习本课之前应具备的基本知识和技能:

3、 习者对即将学习的内容已经具备的水平:

三、 教学/学习目标及其对应的课程标准:

1、 历经统计特殊现象出现的频率的探索过程,发展学生的概括能力和动手能力。

2、 能够正确分析统计数据与规律之间的关系,培养学生的数学兴趣。

3、 通过合作、**式学习,加强学生的团队精神,积极承担在完成共同任务中个人的责任;积极的相互支持、配合,特别是面对面的促进性的互动;学生能进行有效的沟通。

四、教育理念和教学方式:

1、本节课的重点是由教师搭建一个学习、讨论、**的平台,提供相应的条件支持,是一个组织者和参与者,在整个课程中,教师的角色是组织者,真正的实施者是学生,要最大限度地满足学生自主发展的需要,要尽可能做到让学生在"活动"中学习,在"主动"中发展,在"合作"中增知,在"**"中创新,要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主**,问题让学生自主解决。让学生在课堂上有充分地讨论权和发言权,对提出错误观点的同学要加以引导和鼓励,让学生在质疑中**,在观察中比较,在矛盾中发现,在问题解决中获知,在实践活动中体会。

2、本节课的教学方法主要采用合作式教学法和**式教学法,在完成对相关知识点的回顾后,从学生的生活经验和已有的知识背景出发,引入新课题,让学生进行分组讨论,对引入的新课题学生可以提出自己的问题,然后小组之间进行互动交流,互相解答疑难,达成共识,总结规律。教师为学生创造主动参与学习过程的条件,使学生领悟新知识,帮助学生在自主探索的过程中真正理解和掌握基本的数学知识、技能、数学思想和方法。

五、教学**和教学技术选用:

1、本次教学需要实物教具和多**课件的辅助。教具模型由教师课前制作。

2、教具模型和多**课件分别在本课的引入、议一议、做一做、感悟与收获等环节中得到应用,它们的使用可以更好的帮助学生发现规律,是学生的学习资源更为丰富。

六、. 教学和活动过程:

教学准备阶段:

1、教师准备:

打印**。2、学生准备:

每人一个盒子,内装两个球(两个球分别标上数字);每两人一个透明的矿泉水瓶子及1枚一元硬币。(一面字,一面国徽)

课本、练习本、计算器、尺子、笔。

. 整个教学过程叙述:

具体教学过程设计如下。

课前出示课题(频率与概率)

师:上课。大家喜欢听周杰伦的歌吗?

生:喜欢(还行……)

师:周杰伦开演唱会时,小丽、小明、小美一起去买票,结果只剩一张票,怎么班呢?有人说了“你们来做个游戏吧,用游戏决定谁去听演唱会。游戏规则是这样的……”幻灯片]

师:大家想一下,可能出现的两个数字之和是什么?

生:可能出现

师:好,这时小丽就说“当数字和为2时我去。” 小明说“那好,当数字和为3时我去。” 小美说“当数字和为4时我去。”你觉得他们谁更明智呢?[幻灯片]

生:……师:同学们的选择各不相同,那到底谁的选择更明智呢。我们怎样来验证呢?

生:通过实验。

师:那好,我们现在就按照这个游戏规则来做实验。[幻灯片]咱们把摸两次球计算出的数字之和作为一次试验结果。

先个人做30次实验,看看结果如何。实验之前我要先问问大家这次试验有没有要注意的问题。

生:球要一样、盒子要不透明、要摇匀、第一次摸完要将球放回。

师:好,现在我们就可以开始试验了,做30次试验后请同学们根据实验结果填写**1,并制作出频数分布直方图。[幻灯片]

学生实验,教师巡视、指点]

有学生的结果统计可能会很麻烦,适当提点]

师:[请某两位学生将他的**和图用实物投影演示]

大家来看一看这位同学根据他所得到的实验数据制作的频数分布直方图是否正确?

生:……师:大家根据你所得的实验结果和制作的频数分布直方图,能看出什么呢?

生:两个球面数字和等于3的频率最大……

师:两个球面数字和等于3的频率是多少?

生:……师:几个同学所得的结果不很相同,我想问问大家,若想使得实验数据更加可靠,我们应该……

生:增加实验次数。

师:[幻灯片]那请同学们按六人小组,分别汇总两人、三人、四人、五人、六人的球面数字和等于3的数据。填写**2,并绘制相应的频率折线统计图。

生:动手操作。

师:[幻灯片]小组同学交流讨论,现在你又发现了什么?

师:哪个小组同学想来说说看?[2位学生]

[学生带着数据和统计图,边实物演示,边讲。]

师:刚才有同学分析说随着实验次数的增多,频率波动较小了,那现在老师把全班同学的实验数据收集起来,制作一个频率折线统计图,请同学们再来看一看。[链接els]

通过这个频率折线统计图我们就更能清楚的看到两个球面数字和等于3的频率稳定于。

师:请各小组将你们组180次实验所得的两个球面数字和等于3的频数告诉老师。[写黑板]请同学们计算出频率是多少。与我们的估计相近吗?

师:现在我再请同学们计算出两个球的球面数字和等于3的概率。

生:计算结果。[全班说结果]

师:[幻灯片]你能发现两个球的球面数字和等于3的频率与两个球的球面数字和等于3的概率有什么关系吗?

生:几乎相等。

师:通过这次实验结果你有什么感悟呢?[幻灯片]

生:是不是可以通过一个事件发生的频率来估计这一事件发生的概率?

生:要通过大量的实验,才能用一个事件发生的频率来估计这一事件发生的概率。

师:很好,通过这次实验我们大家要知道,当某些事件发生的概率无法准确计算出时,我们可以通过多次实验,用这个事件发生的频率来估计它的概率。[幻灯片]

师:我们已经估计出两个球的球面数字和等于3的概率是,那你能否用原来的实验数据估计出两个球的球面数字和等于2的概率呢?小组合作。[幻灯片]

生:交流合作。

师:提问几名学生。

师:咱们再回到刚才的游戏中去,现在我们是不是已经能够很清楚的知道谁的选择更明智了吧。

生:……师:为了进一步体会频率与概率之间的关系,我们再来做一个抛硬币实验[幻灯片]。

师:实验会有几种可能的结果出现?请你通过这个实验来估计这个事件发生的频率?

生:操作实验。[小组汇总]

师:请小组代表说结果。

师:这一事件三种情况发生的概率分别是多少?你的结果和概率接近吗?(不接近的原因是什么?)

生:实验次数少、实验中操作的不正确、不能完全做到随机性)

师:通过这节课的学习,你有了什么收获?[幻灯片]

生:可以通过多次实验,用一个事件发生的频率来估计这个事件发生的概率;随着实验次数的增加,频率会比较稳定;实验中要注意……;统计图的直观性;……

师:很好,通过本节课的学习,我们在获得新知识的同时又巩固了以前所学过的知识。课后,请同学们做课本p157的习题6.1[幻灯片]。

师:下课。鱼(x,y)变化成为鱼(-x,y)时,所得的鱼与原来的鱼关于y轴对称;

七、课后反思:

1、 整个教学过程中学生在教师的激励、启发和诱导之下,运用科学的方法去**他们暂时还未理解和掌握的知识,从不知到知,从知之不多到知之甚多,从学会知识到会学知识和会用知识,再把知识转化为能力。通过"学、思、疑、问、探"等多种方式,去挖掘自己的内在潜力,既获得新知,又增长能力。

2、 在互动讨论过程中学生各自发表见解,集中解决难点,大部分学生表现积极踊跃,学生思想情感得到了交流,培养了团结协作精神,构建了民主和谐气氛,为养成良好个性品质打下了良好的基础。

初三数学频率概率复习题

姓名总分。一 选择题。1.两人在玩 石头 剪刀 布 的游戏中,那么石头胜的概率为 a.1 8b.2 9c.1 4 d.1 3 2.一副扑克牌是54张,随意摸到一张是10的概率为 a.1 54 b.1 26 c.2 27d.1 13 3.在1 9这九个数中,任取一个数,那么得到奇数的机会比得到偶数的机...

初三数学频率概率练习题

一 选择题。1.两人在玩 石头 剪刀 布 的游戏中,那么石头胜的概率为 a.b c.d.2.一副扑克牌是54张,随意摸到一张是10的概率为 a.b.c.d.3.在1 9这九个数中,任取一个数,那么得到奇数的机会比得到偶数的机会 a.大 b.相等 c.小 d.无法确定。4.平面上有10个点,没有三点在...

初三数学九年级上册 6 5《频率与概率》教学设计教案

1 经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识。和能力。通过实验估计随机事件发生的概率的方法。领会当实验次数很大时,可以用一个事件发生的频率来估计这一事件发生。的概率。问题引入 回搅匀再抽。将实验结果填入下表 出现5的倍数。的频数出现5的倍数。的频率。根据上表中的数据绘制频率折线...