2023年版小学数学课程标准解读

发布 2022-03-25 05:40:28 阅读 6494

(张丹教授发言原稿)

2023年12月28日教育部正式发布义务教育课程标准(2023年版),并于2023年秋季开始执行。数学课程标准(2023年版)发布后全国的数学教师掀起一股学课标、研课标、论课标的热潮,在学习中老师们还存在不少困惑,亟需课程标准修订组的专家为我们答疑解惑。

张丹,教师教育数理学院学术委员会主任,北京教育学院数学系教授,教师教育数理学院院长。她是国家义务教育数学课程标准和高中数学课程标准的核心组成员,也是课程标准修订核心组成员,是新世纪小学数学教材副主编。自己独立编著或与他人合作著有《小学数学教学策略》、《新课程数学教学研究与资源丛书“统计与概率”》、数学课程设计》、《新课程理念与初中数学课程改革》等七部,及各种**三十余篇。

下面是张丹教授在某教师进修学校讲课的发言原稿,供大家共同学习。)

各位老师:晚上好。非常荣幸能和老师们共同就新课程标准进行讨论,也是自己的一些学习体会,不一定正确,供大家参考。

课程标准从基本理念、课程目标、核心概念、课程内容、实施建议等方面进行了修订。今天主要介绍课程目标、核心概念和课程内容的变化。

首先看课程目标。《标准》与《实验稿》一样,明确了学生在义务教育阶段的发展应该是多方面的。

进一步,《标准》在《实验稿》基础上,明确提出了获得必需的基础知识、基本技能、基本思想、基本活动经验;在分析和解决问题的基础上,明确提出了增强发现和提出问题、分析和解决问题的能力,这些无疑是巨大进步。

同时,《标准》还对一些目标进行了完善,比如对于学习习惯,明确提出了应该培养的学习习惯是:认真勤奋、独立思考、合作交流、反思质疑。

将双基拓展为四基,首先体现了对于数学课程价值的全面认识,学生通过数学学习不仅仅获得必需的知识和技能,还要在学习过程中积累经验、获得数学发展和处理问题的思想。同时,新增加的双基,特别是基本活动经验更加强调学生的主体体验,体现了以学生为本的基本理念。

提出基本思想、基本活动经验的最重要的原因,是要切实发展学生的实践能力和创新精神,特别是创新精神。实际上,一个人要具有创新精神,可能需要三个基本要素:创新意识、创新能力和创新机遇。

其中,创新意识和创新能力的形成,不仅仅需要必要的知识和技能的积累,更需要思想方法、活动经验的积累。也就是说,要创新,需要具备知识技能、需要掌握思想方法、需要积累有关经验,几方面缺一不可。

正如史宁中教授所说:“创新能力依赖于三方面:知识的掌握、思维的训练、经验的积累,三方面同等重要。”

对于数学活动经验的内涵,目前学者们的观点并不统一。这里介绍几个。

张奠宙指出:“数学经验,依赖所从事的数学活动具有不同的形式。大体上可以有以下不同的类型:

直接数学活动经验(直接联系日常生活经验的数学活动所获得的经验)、间接数学活动经验(创设实际情景构建数学模型所获得的数学经验)、专门设计的数学活动经验(由纯粹的数学活动所获得的经验)、意境联结性数学活动经验(通过实际情景意境的沟通,借助想象体验数学概念和数学思想的本质)。”

徐斌艳教授认为:我们还可以将基本活动经验进一步细化,它包括基本的数学操作经验;基本的数学思维活动经验;发现问题、提出问题、分析问题、解决问题的经验。

孔凡哲教授认为:““基本活动经验”是指“在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。”

本人认为,无论大家的观点如何,有几点是共同的:

第一,基本活动经验建立在生活经验基础上。

第二,是在特定数学活动中积累的。

第三,其核心是如何思考的经验。

第四,最终帮助学生建立自己的数学现实和数学学习的直觉,学会运用数学的思维方式进行思考。

这里就有几个关键词:学生现实、数学活动、思考和反思。特别要设计好的数学活动。

这里列举两个例子。

第一,数数活动。比如“数数”的活动,仔细思考,在这个活动中,学生可以对自然数的基数意义和序数意义有所体会,可以体会一一对应的原则。不仅仅是对于数的认识,学生在数数过程中还为数的比较大小,加法(往后数)、减法(往前数)、乘法(几个几个的往后数),除法(几个几个的往前数),甚至是数排列的规律等奠定了丰富的经验。

第二,发去北师大五年级图形面积的第一节课。

在这个活动中,学生将在比较图形面积的活动中积累比较方法的经验:数面积单位、通过平移旋转轴对称过后的两个图形的面积是相等的、图形的割补、图形的拼接等。

所以,对于一线老师,我觉得有三件事情是值得做的:

第一,积累好的案例。

第二,认真地研究学生。学生在面对一个问题时他们是如何思考的,其中是否存在着经验。

第三,探索经验形成的途径。一般说来,要经历:“经历、内化、概括、迁移”的过程。

首先,需要经历,无论是生活中的经历、还是学习活动中的经历,对于学生基本经验的积累是必须的。但仅仅是经历是不够的,还需要学生在活动中充分调动数学思维,将活动所得不断内化和概括,最终迁移到其他的活动和学习中。由此可见,数学活动经验既是数学学习的产物,也是学生进一步认识和实践的基础。

这里反思和迁移是重要的。比如,我在国外教材中看到过这样的问题:”今天你学习的方法在以前**用过?今后可能用到什么地方“。这样的问题就是在帮助学生实现迁移。

下面,谈谈基本思想。

在课程标准解读中,提出了三个基本思想:抽象、推理、模型。

人们通过抽象,从客观世界中得到数学的概念和法则,建立了数学学科; 通过推理,进一步得到更多的结论,促进数学内部的发展;通过建模,把数学应用到客观世界中,沟通了数学与外部世界的桥梁。

比如,由数量抽象到数,由数量关系抽象到方程、函数(如正反比例)等;通过推理计算可以求解方程;有了方程等模型,就可以把数学应用到客观世界中。

笔者认为基本思想这一层面是数学思想的最高层面。

处于下一层次的还有与具体内容紧密结合的具体思想,如数形结合思想、化归思想、分类思想、方程思想、函数思想等。

在数学思想之下统领的还有一些具体的方法。

对于教师,我认为首先要对数学基本思想要熟悉,心里有这根弦。作为研究,可以研究与具体内容紧密结合的具体思想,如数形结合思想、函数思想等。

限于篇幅和时间,这里不好列举大的案例。感兴趣的老师,我最近要在东北师范大学出版社出版一本对于课程标准的解读,上面有比较丰富的一线老师们的案例。

下面说说发现和提出问题、分析和解决问题。这里关键和要鼓励学生发现和提出问题,比如有的地方进行的”单元情境+提出问题“的试验。

对于一个单元,设计一个大的情境,鼓励学生根据大情境从不同角度提出问题,然后根据情况选择其中一些问题进行讨论,在分析和解决问题中学习新的内容。

下面说说发现和提出问题、分析和解决问题。这里关键和要鼓励学生发现和提出问题,比如有的地方进行的”单元情境+提出问题“的试验。

对于一个单元,设计一个大的情境,鼓励学生根据大情境从不同角度提出问题,然后根据情况选择其中一些问题进行讨论,在分析和解决问题中学习新的内容。

有的老师在学生学习之后,鼓励学生提出一些新的可以研究的问题,这也很好。比如,在一次小数的认识学习后,我就鼓励身边的小组学生提出想要进一步思考的问题。

学生纷纷提出了“小数点的作用是什么”“小数为什么要叫‘小’数”“不是十进分数的分数能否化成小数”“小数和自然数一样也是无限大的吗”等。

有的老师在学生学习之后,鼓励学生提出一些新的可以研究的问题,这也很好。比如,在一次小数的认识学习后,我就鼓励身边的小组学生提出想要进一步思考的问题。

学生纷纷提出了“小数点的作用是什么”“小数为什么要叫‘小’数”“不是十进分数的分数能否化成小数”“小数和自然数一样也是无限大的吗”等。

并且他们对于“小数和自然数一样也是无限大的吗”这一问题进行了讨论,下面是片段:

生1:我觉得是无限大的。

师:说说你的理由?能举个例子吗?

生2:比如说,10000.1比10000大;再多就是100000,100000.1比100000大;再多就是……一直可以再多,谁也不知道到底有多大。

生3:我觉得自然数有多大,小数就有多大。因为,自然数的基础上可以再加一个小数,自然数是无限大的,小数就是无限大的。

生4:我补充,1亿加上0.1就比1亿大了。

生1:小数是在自然数上“附加”的,所以如果自然数是无限多,小数就应该无限大。

大家都表示同意)

这里特别有两句话,提醒老师们注意:

第一,启发学生思考的最好的办法是教师与学生一起思考。

教师要能暴露自己的思考路径,教学中为什么要提出这些问题供大家思考,遇到情境可以从哪些方面提出问题,遇到这些问题后应该从哪些角度来分析,解决了这个问题又可以提出哪些新的问题。

第二,要鼓励学生”从头到尾“的思考问题。这句话是史宁中教授的,我觉得很形象。

比如,小学中也有很多例子,比如圆的周长与直径的关系,教师一上来就让学生去测量,然后用周长去除以直径。学生就没有“从头思考”,为什么要用周长去除以直径?

这时候,教师可以引导学生思考:圆的周长的大小与什么有关,学生能可以到与直径或半径有关,因为直径等于2个半径,所以可以只研究周长与直径的关系。

那么有什么关系呢?教师可以鼓励学生类比正方形,正方形的周长等于边长的4倍,那么圆的周长是否也和直径存在着倍数关系呢,不妨测量以后相除看一看。

这个例子,我昨天在家里和我的儿子试了试,他是完全可以接受的。进一步,我又鼓励他思考,接着要想什么。

他说,要想为什么我测了以后不是3倍多,为什么数学家就能得到这么准确的值。

还可以问,为什么是3倍多而不是2倍多。

多么可爱的孩子。

时间的关系,下面我们进入到核心概念的讨论。

标准》指出:“在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。

核心概念反应了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。

与《实验稿》相比,在这10个核心概念中,有一些是新增加的:运算能力、模型思想、几何直观、创新意识;

有一些是名称或内涵发生较大变化的:数感、符号意识、数据分析观念;

有一些是保持了原有名称,基本保持了原有内涵:空间观念、推理能力、应用意识。

进一步,这10个核心概念可以分成三层。

第一层,主要体现在某一内容领域的核心概念。数感、符号意识、运算能力主要体现在数与代数领域,空间观念主要体现在图形与几何领域,数据分析观念主要体现在统计与概率领域;

2023年版小学数学课程标准解读

张丹教授发言原稿 2011年12月28日教育部正式发布义务教育课程标准 2011年版 并于2012年秋季开始执行。数学课程标准 2011年版 发布后全国的数学教师掀起一股学课标 研课标 论课标的热潮,在学习中老师们还存在不少困惑,亟需课程标准修订组的专家为我们答疑解惑。张丹,教师教育数理学院学术委员...

2023年版小学数学课程标准》读后反思 二

标准 的第四部分 实施建议 也是我重点阅读的部分,包括教学建议 评价建议 教材编写建议和课程资源开发与利用建议。教学建议对教学活动的特点和教师与学生的角色定位给予了更加详细的描述,是我们耳熟能详的内容。教学活动是师生积极参与 交往互动 共同发展的过程。课程基本理念 中,对学习活动也给予了明确的表述。...

2023年版小学数学课程标准》读后反思 一

闲时,总爱拿着 2011年版小学数学课程标准 阅读,边读边思,真是受益匪浅。我重点阅读的是 课程基本理念 和 实施建议 部分 课程基本理念 中,指出 数学要面对全体学生,适应学生个性发展的需要,使得 人人都能获得良好的数学教育,不同的人在数学上得到不同的发展 反思我在教学中真正关注到这两点了吗?既要...