六年级奥数专题九:最优化问题。
概念总结。最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。
最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。
[典型例题]
例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?
例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?
例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
例4: 把25拆成若干个正整数的和,使它们的积最大。
例5: a、b两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?
例6: 甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产900套西服;乙厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?
例7: 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7p(p为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?
例8: 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?
课后练习]
1、十个自然数之和等于1001,则这十个自然数的最大公约数可能取的最大值是多少?(不包括0)
2、在两条直角边的和一定的情况下,何种直角三角形面积最大,若两直角边的和为8,则三角形的最大面积为多少?
个人各拿一个水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟,如果只有一个水龙头适当安排他们的打水顺序,就能够使每个人排队和打水时间的总和最小,那么这个最小值是多少分钟?
4、某水池可以用甲、乙两水管注水,单放甲管需12小时注满,单放乙管需24小时注满。若要求10小时注满水池,并且甲、乙两管合放的时间尽可能地少,则甲乙两管全放最少需要多少小时?
5、有1995名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在该公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?
6、甲、乙两人轮流在黑板上写下不超过10的自然数,规则是禁止写黑板上已写过的数的约数,不能完成下一步的为失败者。问:是先写者还是后写者必胜?如何取胜?
四年级奥数 最优化问题
学习必备欢迎 第7讲最优化问题。一 知识要点。在日常生活中,我们经常会遇到下面的问题 完成一件事情,怎样合理安排才能做到用的时间最少,效果最佳。这类问题在数学中称为统筹问题。二 精讲精练。例题1 用一只平底锅煎饼,每次只能放两个,剪一个饼需要2分钟 规定正反面各需要1分钟 问煎3个饼至少需要多少分钟...
四年级奥数最优化问题
简单规划。知识与方法 在日常生活中,经常会遇到在某时间内做好几件事情,那么怎么安排先后顺序才比较节约时间呢?用较少时间完成同样多的事情,使得做事效率最高。这类问题,我们叫做 简单规划 也叫 统筹规划 例题精讲 例1 芳芳在早上要做很多事情 起床 穿衣要4分钟 刷牙 洗脸 整理房间要9分钟 在煤气灶上...
四年级奥数练习最优化问题
最优化问题。同学们都有这样的体会 从一个地方到另一个地方,两地之间有许多路,就有许多种走法,从中选择一条最近的路,也就是要选择一条最短的路线。下图中,小李和小冬分别住在m n两地,如果他们要步行到河边坐同一条船,请问,船停靠在何处,小李和小冬两人所走的路程和最短?思路分析 利用对称原理,首先在河的另...