6.6.2.1 平面图形的认识。
班级姓名。一、知识回顾。
1.试着画一组直线、射线和线段。并说说每一种“线”的特征及它们之间的关系。
2. 什么叫做角?请你自己画一个任意角.角各部分的名称都是什么?我们学习过哪几类角? 每种角的特征是什么吗?
3.回顾前面学过的知识,自主完成下表:
二、专项训练。
2.选择。(1)一条( )长1.5米。 ①直线 ②射线 ③线段。
(2)在两条平行线之间画的所有线段长度( )
都相等 ②都不相等 ③有的相等,有的不相等。
三、课堂达标
1.判断。1)小于180度的角叫做钝角。(
2)平角是一条直线。
3)两条直线相交组成的四个角中,如果有一个角是直角,那么其他的三个角也是直角。
4)不相交的两条线叫做平行线.(
5)等边三角形一定是等腰三角形.(
6)任何两个等底等高的梯形都能够拼成一个平行四边形.(
2.选择题.
1)直角的两条边是( )
直线② 射线③ 线段。
2)等边三角形是( )
锐角三角形② 直角三角形③ 钝角三角形。
四、课外拓展。
一个三角形,三个角的度数比为2∶3∶7,这个三角形最大角是( )度,它是三角形。
五、学习评价。
6.6.2.2平面图形周长和面积的整理与复习。
一 、知识梳理。
平面图形的周长和面积计算公式都有哪些?
平行四边形等图形没有周长公式,是不是它们就没有周长?它们的周长怎么求?
1.回顾公式推导过程。
这些平面图形的周长和面积计算公式是如何推导出来的呢,请你在小组中试着说一说。
1)沿平行四边形的一条高剪开,平移可以拼成( )因为长方形的长就是平行四边形的( )长方形的宽就是平行四边形的( )所以平行四边形的面积=底×高。
2)沿圆的半径把圆分成若干等份,然后拼成一个近似的( )长方形的长就是就是圆周长的( )长方形的宽就是圆的( )所以圆的面积=圆周率×半径的平方。
3)两个完全一样的三角形可以拼成一个平行四边形的底等于三角形的( )平行四边形的高是三角形的高,所以三角形的面积=底×高÷2。
4)两个完全一样的梯形拼成一个平行四边形的底等于梯形的平行四边形的高就是梯形的( )所以梯形的面积=(上底+下底)×高÷2。
5)长方形和正方形是用的方法推导出的面积计算公式。
2.探索知识间的相互联系,构建知识网络。
这些平面图形在推导面积公式的过程是否存在联系,如果有联系,又是有怎样的联系。
小结:三角形和梯形是转化成平行四边形推导出的面积计算公式,圆形和平行四边形是转化成长方形推导出的面积计算公式。正方形又是特殊的长方形,可以根据长方形的面积计算方法推导出面积计算公式。
二、重点训练。
1.一堆钢管,横截面近似于梯形,最上层4根,最下层8根,每相邻两层相差一根,这堆钢管共有( )根。
2.有一个等腰三角形,顶角与一个底角的度数比是2:1,这个三角形的三条边分别是1分米,1分米,1.42分米,这个三角形的面积是多少?
3.一间房子要用方砖铺地,用边长3分米的方砖,需要96块。如果改用边长是2分米的方砖要多少块?用比例解。
三、课堂达标。
1.填一填。
1)将一个圆沿半径分成若干等份,拼成一个近似长方形,这个近似长方形的长是宽的( )倍。
3)一圆形水池,直径为30米,沿着池边每隔5米栽一棵树,最多能栽( )棵。
4)一个平行四边形和一个三角形等底等高,已知平行四边形比三角形的面积大7平方厘米,三角形的面积是( )平方厘米,平行四边形的面积是( )平方分米。
2.一块三角形菜地的面积是0.25公顷,菜地的底为125米,高是多少米?
五、学习评价。
6.6.2.3 立体图形的认识整理与复习。
班级姓名。学习目标】
1.明确长方体、正方体、圆柱和圆锥等立体图形的特征,能从整体上把握这些图形的特征及其相互关系。
2.能整理学过的有关立体图形方面的知识,并掌握相应的技能。
学习过程】一、知识梳理。
1.复习长方体和正方体。
小组展开讨论,交流意见,整理归纳。合作完成**一。
2.复习圆柱和圆锥。
二、重点训练。
1. 判断并说一说理由。
1) 圆柱的侧面展开图不是正方形就是长方形。(
2) 长方体的三条棱就是它的长、宽、高。(
3) 圆锥的高有一条,圆柱的高有两条。(
2.一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是多少厘米?
3.一个正方体的棱长是5分米,如果把这样的两个正方体拼成一个长方体,长方体的棱长总和是多少米?
三、课堂达标
1. 一个圆锥形沙堆,底面周长是18.84米,高是6米,求这个沙堆的重量?(每吨沙的体积是立方米)
2.一个圆柱体的侧面积是12平方米,半径是2米,求它的体积。(要求根据课本中圆柱体积的推导过程,不先求出圆柱的高,而用较简便的方法解答。)
3.一个圆锥体,底面周长和它的高相等,它的底面半径是3厘米,你知道和它同底等高的圆柱体的侧面积是多少平方厘米吗?
五、学习评价。
6.6.2.4 立体图形表面积和体积的整理与复习。
学习过程】一、知识梳理。
1.复习立体图形表面积和体积的意义及计算公式。
立体图形的表面积是指立体图形体积是指。
你所知道的立体图形表面积公式有。
你所知道的立体图形体积公式有。
2.复习计算公式的推导过程。
那么,这些计算公式是怎样推导出来的?请同学们选择1-2种自己喜欢的图形,在小组里说一说。
我的收获:从立体图形的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。
3.整理知识间的内在联系。
1)立体图形的表面积计算公式的内在联系:长方体和圆柱体的表面积都可以用( )加( )
2)立体图形的体积计算公式的内在联系:正方体、圆柱的体积计算公式都是在( )体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥体积的( )等体积等高的圆柱体的底面积是圆锥的( )等体积等底的圆柱体的高是圆锥的( )
二、重点训练。
1.判断。(对的打“√”错误的打“×”
1) 正方体的棱长扩大2倍,体积就扩大6倍。(
2) 一个圆柱体底面半径缩小3倍,高扩大9倍,它的体积不变。(
3) 因为求体积与求容积的计算公式相同,所以物体的体积就是它的容积。(
4) 圆柱和圆锥等底等高,则圆锥的体积比圆柱少,圆柱的体积比圆锥多200%。(
2.解决问题。
2)一个底面直径是40厘米的圆柱容器中,水深12厘米,把一块石头沉入水中完全浸没后,水面上升了5厘米。这块石头的体积是多少立方厘米?
3)一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深10厘米,把酒瓶塞紧后倒置(瓶口向下), 这时酒深20厘米,你能算出酒瓶的容积是多少毫升来吗?
三、课堂达标
1.填一填:
1)甲乙两人分别利用一张长20厘米,宽15厘米的纸用不同的方法围成一个圆柱体,那么,围成的圆柱( )一定相等。
2)把一个边长1分米的正方形纸围成一个最大的圆柱体,这个圆柱体的体积是( )
2.解决问题。
有一个近似圆锥的小麦堆,测得其底面周长是12.56米,高1.5米。
如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?将这些小麦装入底面积是3.
14平方米的圆柱形粮囤里能装多高?
四、学习评价。
6.6.2.5 图形的运动。
一、 知识梳理。
大家都知道这部分知识比较多,请各小组试这着用网络图把各个知识之间的联系与区别画出来。
图形和变换。
2.请你想一想,填一填区分图形变换的方法。
上面的学习中你有什么不明白的地方吗?写一写。
二、专项训练。
1. 你能说说图形的变换有哪些方法吗?然后再让根据教材情景图,说出图中三个少先队员剪出图案、设计图案和制作板报花边,各采用了什么方法?
然后你指出剪纸的对称轴,指出正方形的旋转中心,说出旋转了多少度。
2. 下面的“做一做”先自己完成,然后集体交流。相互讲一讲变换的过程。
人教版小学六年级数学下册九单元 总复习 课堂达标题三
6.6.3.1 统计与概率 一 复习。班级姓名。一 知识梳理。1.我们学过的统计方法有。2.请你想一想,填一填,完成下表。二 专项训练。1.完成课本 p109 110例1。2.完成下面统计图。3.回顾反思。三 课堂达标 填空。1 绘制统计图时,要能清楚地表示出数量增减变化的情况,可选用 统计图。2 ...
人教版小学六年级数学下册《第五单元 数学广角 》导学案
课堂导入 抢凳子的游戏 请4位同学上来,摆开3张凳子。游戏规则 4位同学围着凳子转圈,老师喊 停 的时候,四个人每个人都必须坐在凳子上。你发现了什么?如果改为5个人抢3或4张凳子呢?自学内容p70及做一做p731,每课100p28第1课时 学习 目标1 经历 抽屉原理 的 过程,初步了解 抽屉原理 ...
人教版小学六年级数学下册三单元试卷
依兰中心学校六年级三月份数学月考试卷。班级姓名成绩。一 填空 每题1分共13分 2dm3 cm3 3.07l ml 2.5公顷 平方米 5 30g 2 所有的负数都比0 所有的正数都比0 所以负数都比正数 0不是 也不是 3 如果3a 4b,那么a b 4 一项工程,单独做甲队要10天,乙队要8天,...