2023年初三数学中考全真模拟考试卷。
一、 选择题(本题有10小题,每小题4分,共40分)
1. 下列式子中结果为负数的是( )
a.│一2│ b.一(-2) c.-2—1 d.(一2)2
2. 国家游泳中心--“水立方”是北京2023年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为( )
a. b. c. d.
3. 下列图案中是轴对称图形的是( )
4. 将不等式的解集在数轴上表示出来,正确的是。
5. 将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度与注水时间的函数图象大致( )
6. 如图,把一张长方形纸片对折,折痕为,再以的中点为顶点把平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是( )
a.正三角形 b.正方形 c.正五边形 d.正六边形。
7. 如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离be为5m,ab为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( )
a.()m b.()m c. m d.4m
8. 圆上有a、b、c、d四点,圆内有e、f两点且e、f在bc上。若四边形aefd为正方形,则下列弧长关系,正确的是( )
a . b. =c. 9. 将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是( ) abcd。10. 如图,点a是5×5网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为1,以a为其中的一个顶点,面积等于的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( ) a.10个 b.12个 c.14个 d.16个。 二、 填空题 (本题有6小题,每题5分,共30分) 11. 如果点p()关于原点的对称点为(-2,3),则。 12. 函数中,自变量的取值范围是。 13. 如图,把一个长方形纸片沿ef折叠后,点d、c分别落在d′、c′的位置,若∠efb=65°,则∠aed′等于 14. 一圆锥的母线长为6cm,它的侧面展开图的圆心角为120°,则这个圆锥的侧面积为___ 15. 如图15,直线与轴、轴分别相交于两点,圆心的坐标为,⊙p与轴相切于点.若将⊙p沿轴向左移动,当⊙p与该直线相交时,横坐标为整数的点有个. 16. 如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为(n≥3).则的值是 ,当的结果是时,n的值 . 三、解答题 (本题有8小题,第17~20题每题8分,第21题10分,第题每题12分,第24题14分,共80分) 17. 18. 解方程: 19. 如图,ab是⊙o的直径,∠bac=30°,m是oa上一点,过m作ab的垂线交ac于点n,交bc的延长线于点e,直线cf交en于点f,且∠ecf=∠e. 1)求证:cf是⊙o的切线; 2)设⊙o的半径为1,且ac=ce,求mo的长。 20. 国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度。某市根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销。 医疗费的报销比例标准如下表: 1)设某农民一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为y元,试求y与x的函数关系式; (2)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费为多少元? (3)若某农民一年内自付医疗费不少于4100元,则该农民当年实际医疗费至少为多少元? 21. 如图9,在平面直角坐标系中,二次函数的图象的顶点为d点,与y轴交于c点,与x轴交于a、b两点, a点在原点的左侧,b点的坐标为(3,0),ob=oc ,tan∠aco=. 1)求这个二次函数的表达式. 2)经过c、d两点的直线,与x轴交于点e,在该抛物线上是否存在这样的点f,使以点a、c、e、f为顶点的四边形为平行四边形?若存在,请求出点f的坐标;若不存在,请说明理由. 3)若平行于x轴的直线与该抛物线交于m、n两点,且以mn为直径的圆与x轴相切,求该圆半径的长度. 4)如图10,若点g(2,y)是该抛物线上一点,点p是直线ag下方的抛物线上一动点,当点p运动到什么位置时,△apg的面积最大?求出此时p点的坐标和△apg的最大面积。 2023年初三数学中考全真模拟考试卷。 一、选择题: cddcb adccd 二、填空题: 11、-1 12、x≥-2且x,199 三、解答题。 18、x=1.检验:x=1是原方程的增根。原方程无解。 20、解:(1)y= (x-500)(500<x≤10000)- 注:不说明范围的不扣分)- (2) 设该农民一年内实际医疗费为x元。 则当x≤500时,不合题意, 当(500<x≤10000)时,有500+(x-500) ×0.3=2600 解之得:x=7500(元),答:(略) 3) 设该农民一年内实际医疗费为x元, 500+(10000-500) ×0.3=3350<4100,∴x>10000 根据题意有:500+(10000-500) ×0.3+(x-10000) ×0.2≥4100 解之得:x≥13750,答:(略) 21、(1)方法一:由已知得:c(0,-3),a(-1,0) 将a、b、c三点的坐标代入得。 解得。所以这个二次函数的表达式为。 方法二:由已知得:c(0,-3),a(-1,0 设该表达式为。 将c点的坐标代入得。 所以这个二次函数的表达式为。 注:表达式的最终结果用三种形式中的任一种都不扣分) 2)方法一:存在,f点的坐标为(2,-3 理由:易得d(1,-4),所以直线cd的解析式为: e点的坐标为(-3,0 由a、c、e、f四点的坐标得:ae=cf=2,ae∥cf 以a、c、e、f为顶点的四边形为平行四边形。 存在点f,坐标为(2,-3 方法二:易得d(1,-4),所以直线cd的解析式为: e点的坐标为(-3,0 以a、c、e、f为顶点的四边形为平行四边形。 f点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合。 存在点f,坐标为(2,-3 3)如图,①当直线mn在x轴上方时,设圆的半径为r(r>0),则n(r+1,r),代入抛物线的表达式,解得。 当直线mn在x轴下方时,设圆的半径为r(r>0),则n(r+1,-r),代入抛物线的表达式,解得 圆的半径为或. 4)过点p作y轴的平行线与ag交于点q,易得g(2,-3),直线ag为。 设p(x,),则q(x,-x-1),pq. 当时,△apg的面积最大。 此时p点的坐标为,. 2011年初三中考数学模拟试卷。注意事项 1 本试卷满分130分,考试时间为120分钟 2 卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果 一 细心填一填 本大题共有11小题,14空,每空2分,共28分 请把结果直接填在题中的横线上 1 3的相反数是12的算术平方根是。2 分解因式。3... 满分150分,完卷时间120分钟 一 填空题 每小题3分,共30分 1 如果分式有意义,那么x的取值范围是。2 化简。3 当时,分式的值为零。4 如果方程无实数根,那么的取值范围是 5.已知 一次函数的图象与直线平行,并且经过点。那么这个一次函数的解析式是。6.某校组织初三学生春游,有m名师生租用4... 满分150分,完卷时间120分钟 一 填空题 每小题3分,共30分 1 如果分式有意义,那么x的取值范围是。2 化简。3 当时,分式的值为零。4 如果方程无实数根,那么的取值范围是 5.已知 一次函数的图象与直线平行,并且经过点。那么这个一次函数的解析式是。6.某校组织初三学生春游,有m名师生租用4...2023年初三数学中考模拟卷
2023年初三数学中考模拟试卷
2023年初三数学中考模拟试卷