(2014重庆· 理)如下图,四棱锥,底面是以为中心的菱形,底面,,为上一点,且。
(1)求的长;
(2)求二面角的正弦值。
2014重庆· 文)如下图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且。
1)证明:平面;
2)若,求四棱锥的体积。
解:(1)设,则,
在中由余弦定理。
因为,所以为直角三角形,由勾股定理:
解出。所以。
2)设点到平面的距离为,由体积法知:
即。点到棱的距离为,设所求二面角为,则。
解:(1)证明:由知为等边三角形,故,在中,,由余弦定理可求出,因为,因为底面。
因为,所以平面。
2)设,则,
在中由余弦定理。
因为,所以为直角三角形,由勾股定理:
解出。四棱锥的体积。
2019重庆
答案 c 解析 从波形图可以看出,t0时刻传到l 3 处,说明t0 3t。简谐波沿x轴正向传播,则在t0时刻x 质点的运动方向和波源在t 0时刻的运动方向相同是沿y轴的负方向的,即每一个质点的起振方向都是沿y轴的负方向的,则c d可能正确。由于 18.在一次讨论中,老师问道 假如水中相同深度处有a ...
2019重庆
2014 重庆卷。二 完形填空 共20小题 每小题1.5分,满分30分 请阅读下面两篇短文,掌握大意,然后从16 35各题所给的四个选项 a b c和d 中,选出最佳选项。2014 重庆卷 afive months after my husband steve died,i woke up one ...
2019重庆
现将2012年重庆市中考数学试题第26题第 3 小题的解法发表于后,敬请业内同仁指正 26 已知 如图,在直角梯形abcd中,ad bc,b 90 ad 2,bc 6,ab 3。e为bc边上一点,以be为边作正方形befg,使正方形befg和梯形abcd在bc的同侧 l 当正方形的顶点f恰好落在对角...