机械原理课后答案第3章

发布 2023-05-21 03:08:28 阅读 5142

第3章。

3—1 何谓速度瞬心?相对瞬心与绝对瞬心有何异同点?

答:参考教材30~31页。

3—2 何谓三心定理?何种情况下的瞬心需用三心定理来确定?

答:参考教材31页。

3-3试求图示各机构在图示位置时全部瞬心的位置(用符号p,,直接标注在图上)a)(b)

答:答:

10分)d)

(10分)3-4标出图示的齿轮一连杆组合机构中所有瞬心,并用瞬心法求齿轮1与齿轮3的传动比ω1/ω3。

答:1)瞬新的数目:

k=n(n-1)/2=6(6-1)/2=15

2)为求ω1/ω3需求3个瞬心p16、p36、p13的位置。

1/ω3= p36p13/p16p13=dk/ak

由构件在k点的速度方向相同,可知ω3与ω1同向。

3-6在图示的四杆机构中,lab=60mm,lcd=90mm,lad=lbc=120mm, ω2=10rad/s,试用瞬心法求:

1)当φ=165°时,点的速度vc;

2)当φ=165°时,构件3的bc线上速度最小的一点e的位置及速度的大小;

3)当vc=0时,φ角之值(有两个解)。

解:1)以选定的比例尺μ机械运动简图(图b)

2)求vc定出瞬心p12的位置(图b)

因p13为构件3的绝对瞬心,则有。

3=vb/lbp13=ω2lab/μ

vc=μc p13ω3=0.003×52×2.56=0.4(m/s)

3)定出构件3的bc线上速度最小的点e的位置,因bc线上速度最小的点必与p13点的距离最近,故丛p13引bc线的垂线交于点e,由图可得。

ve=μ4)定出vc=0时机构的两个位置(图c)量出。

3-8机构中,设已知构件的尺寸及点b的速度vb(即速度矢量pb),试作出。

各机构在图示位置时的速度多边形。

答:(10分)b)答:

答:3—11 速度多边形和加速度多边彤有哪些特性?试标出图中的方向。

答速度多边形和加速度多边形特性参见下图,各速度方向在图中用箭头标出。

3-12在图示的机构中,设已知构件的尺寸及原动件1的角速度ω1 (顺时针),试用**法求机构在图示位置时c点的速度和加速度。a)答:

(1分)(1分)

vc3=vb+vc3b=vc2+vc3c2 (2分)

ac3=ab+anc3b+atc3b=ac2+akc3c2+arc3c2 (3分)

vc2=0 ac2=0 (2分)

vc3b=0 ω3=0 akc3c2=0 (3分)b)答:

(2分)2分)

vc2=vb+vc2b=vc3+vc2c3 (2分)

3=ω2=01分)

ab+anc2b+atc2b=ac3+akc2c3+arc2c3 (3分)c)答。

2分)vb3=vb2+vb3b2 (2分)

vc=vb3+vcb3 (2分)

1分)a n b3+a t b3=ab2+akb3b2+arb3b2 (3分)

3- 13 试判断在图示的两机构中.b点足否都存在哥氏加速度?又在何位置哥氏加速度为零?怍出相应的机构位置图。并思考下列问题。

1)什么条件下存在氏加速度?

2)根椐上一条.请检查一下所有哥氏加速度为零的位置是否已全部找出。

3)图 (a)中,akb2b3==2ω2vb2b3对吗?为什么。

解 1)图 (a)存在哥氏加速度,图 (b)不存在。

(2)由于akb2b3==2ω2vb2b3故ω3,vb2b3中只要有一项为零,则哥氏加速度为零。图 (a)中b点到达最高和最低点时构件1,3.4重合,此时vb2b3=0,当构件1与构件3相互垂直.即_f=;点到达最左及最右位置时ω2=ω3=0.故在此四个位置无哥氏加速度。图 (b)中无论在什么位置都有ω2=ω3=0,故该机构在任何位置哥矢加速度都为零。

(3)对。因为ω3≡ω2。

3-14 在图示的摇块机构中,已知lab=30mm,lac=100mm,lbd=50 mm,lde=40 mm,曲柄以等角速度ωl=40rad/s回转,试用**法求机构在φ1=45位置时,点d及e的速度和加速度,以及构件2的角速度和角加速度。

解 (1)以μl作机构运动简图 (a)所示。

(2)速度分析:

以c为重合点,有。

vc2 = vb + vc2b = vc3 + vc2c3

大小 ?ω1lab ? 0 ’

方向 ? ab ┴bc //bc

以μl作速度多边形图 (b),再根据速度影像原理,作△bde∽/△bde求得d及e,由图可得。

vd=μvpd=0.23 m/s

ve=μvpe=0.173m/s

2=μvbc2/lbc=2 rad/s(顺时针)

3)加速度分析:

以c为重合点,有。

ac2 ==ab + anc2b + atc2b ==ac3 + akc2c3 + arc2c3

大小 ω12lab ω22lbc ? 0 2ω3vc2c3 ?

方向 b—a c—b ┴bc ┴bc //bc

其中anc2b=ω22lbc=0.49 m/s2,akc2c3=2ω3vc2c3=0.7m/s2,以μa作加速度多边形如图 (c)所示,由图可得。

ad=μap`d`=0.6 4m/s2

ae=μap`e`=2.8m/s2

α2=atc2b/lbc=μan`2c`2/lbc=8.36rad/s2(顺时针) i

3- l5 在图( a)示的机构中,已知lae=70 mm,;lab=40mm,lef=60mm,lde==35 mm,lcd=75mm,lbc=50mm.原动件以等角速度ω1=10rad/s回转.试以**法求机构在φ1=50。位置时.点c的速度vc和加速度a c

解: 1)速度分析:以f为重合点.有。

vf4=vf5=vf1+vf5f1

以μl作速度多边形图如图(b)得,f4(f5)点,再利用速度影像求得b及d点。

根据vc=vb+vcb=vd+vcd 继续作速度图,矢量pc就代表了vc

2)加速度分析:根据 a f4= an f4+ a tf4= a f1+ ak f5f1+ ar f5f1

以μa作加速度多边形图 (c),得f`4(f`5)点,再利用加速度影像求得b`及d’点。

根据 ac=ab+ancb+atcb=ad+ancd+atcd

继续作图,则矢量p` c`就代表了ac.则求得。

vc=μvpc=0.69 m/s

ac=μapc=3m/s2

3-16 在图示凸轮机构中,已知凸轮1以等角速度ω1=10 rad/s转动,凸轮为一偏心圆,其半径r=25 mm,lab=15mm.lad=50 mm,φ1=90,试用**法求构件2的角速度ω2与角加速度α2。

提示:可先将机构进行高副低代,然后对其替代机构进行运动分析。

解 (1)以μl作机构运动简图如图 (a)所示。

(2)速度分析:先将机构进行高副低代,其替代机构如图 (a)所示,并以b为重合点。有。

vb2 = vb4 + vb2b4

大小1 lab ?

方向 ┴ bd ┴ ab //cd

以μv=0.005 rn/s2作速度多边形图如图 (b),由图可得。

ω2=vb2/lbd=μvpb2(μlbd)=2.333 rad/s(逆时针)

(3)加速度分析:

ab2 = anb2 + atb2 = ab4 + akb2b4 + arb2b4

大小 ω22lbd ? 12lab 2ω4vb2b4 ?

方向 b-d ┴ bd b-a ┴ cd //cd

其中anb2=ω22lbd =0.286 m/s2,akb2b4 =0.746 m/s2.作图 (c)得。

α= atb2 /lbd=μan`2b`2/lbd=9.143 rad/s2:(顺时针)

3-18 在图(a)所示的牛头刨机构中.lab=200 mnl,lcd=960 mm,lde=160 mm, 设曲柄以等角速度ω1=5 rad/s.逆时针方向回转.试以**法求机构在φ1=135位置时.刨头点的速度vc。

解 1)以μl作机构运动简图.如图 (a)。

2)利用瞬心多边形图 (b)依次定出瞬心p36,vc=vp15=ω1ap15μl=1.24 m/s

3 -19 图示齿轮一连杆组合机构中,mm为固定齿条,齿轮3的直径为齿轮4的2倍.设已知原动件1以等角速度ω1顺时针方向回转,试以**法求机构在图示位置时e点的速度ve以及齿轮3,4的速度影像。

解:(1)以μl作机构运动简图如(a)所示。

(2)速度分斫:

此齿轮连杆机构可看作,abcd受dcef两个机构串联而成,则可写出:

vc=vb+vcb

ve=vc+vec

机械原理课后答案3章

3 2 在如图所示的齿轮 连杆组合机构中,试用瞬心法求齿轮1与3的传动比 1 3。3 3在如图3 32所示的四杆机构中,lab 60mm,lcd 90mm,lad lbc 120mm,2 rad s,试用瞬心法求 1 当 165 时,点c的速度vc 2 当 165 时,构件3的bc线上 或延长线上 ...

第3章课后答案

一 基本概念。具体答案见教材。二 分析简答。1 答案要点 消费者剩余是指消费者在购买某商品时所愿意支付的最高货币额与他实际支付的货币额之间的差额,是消费者的无形节约。由于消费者选择的消费数量使消费者愿意支付的 恰好等于市场 时的数量,所以,市场 下降时,消费者剩余增加,同时消费数量也增加 市场 上升...

第3章课后习题答案

3 1解。图 3.10 题3 1解图。如图 3.10所示,以o为圆心作圆并与导路相切,此即为偏距圆。过b点作偏距圆的下切线,此线为。凸轮与从动件在b点接触时,导路的方向线。推程运动角如图所示。3 2解。图 3.12 题3 2解图。如图 3.12所示,以o为圆心作圆并与导路相切,此即为偏距圆。过d点作...