五年级奥数

发布 2023-04-14 15:26:28 阅读 8698

牛吃草问题:(中等难度)

有一片牧场,草每天都在均匀的生长。如果在牧场上放养24头牛,那么6天就可以把草吃完;如果放养21头牛,8天可以把草吃完。那么:

(1)要让草永远吃不完,最多放养多少头牛;

(2)如果放养36头牛,多少天可以把草吃完?

牛吃草答案:

(1)设1头牛1天的吃草量为"1",那么天生长的草量为 ,所以,每天生长的草量为也就是说,每天生长的草量可以供12头牛吃1天。那么要让草永远也吃不完,最多放养12头牛。

(2)原有草量 ,可供36头牛吃 。

牛吃草问题:(高等难度)

一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量。请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?

牛吃草答案:

把"36只羊"看做"12只牛",那么,设1头牛1天的吃草量为"1"。草地每天生长的草量为 。原有草量 。

16天后草量 ,如吃16天,需要头牛。现已有17头牛,还需16头牛。也就是还需48只羊。

牛牛吃草问题:(高等难度)

牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?

牛牛吃草答案:

【分析】设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20-10=10(天),说明牧场10天长草50份,1天长草5份。也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。由此得出,牧场上原有草。

(l0-5)× 20=100(份)或(15-5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

找规律:(高等难度)

< 点击下一页查看答案。

找规律答案:这样思考,规律是每个图形里的3个数相加的和都是12.

找规律:(高等难度)

找规律,在空格里填上合适的数。

找规律答案:

第一个三角形的周边的三个小三角形中,2.3.5三个数相加的和,与中间小三角形中的数相等,都是10,可知,每个三角形周边三个小三角形里的数相加的和,就是中间小三角形里的数,就是10,也就是说,中间小三角形里的数连续减去周边两个三角形里的数的差,就是第三个小三角形里的数,根据这一规律,第三个三角形里的数是10-1-4=5,第四个三角形里,上边的小三角形里的数是:

10-7-3=0

找规律:(高等难度)

找规律,在空格里填上合适的数。

找规律答案:这道题可以有多种填法,可以从大到小填数,也可以从小到大填数,两个数之间可以相差1,也可以相差2.3.4或5

找规律:(高等难度)

一“台阶”图的每一层都由黑色和白色的正方形交错组成,且每一层的两端都是黑色的正方形,从上到下第一层到第四层如图所示,则第1993层中白色的正方形的数目是___

< 点击下一页查看答案。

分牌子答案:1992

观察图形可知,每层的白色正方形的个数等于层数减1,因此,第1993层中有1992个白色正方形。

五年级奥数 平方数

22 4,32 9,52 25 像 这样的数,推及一般情况,我们把一个自然数平方所得到的数叫做完全平方数或叫做平方数。如。12 1,22 4,32 9,42 16,112 121,122 144,其中1,4,9,16,121,144,都叫做完全平方数。下面让我们观察一下,把一个完全平方数分解质因数后...

五年级奥数平方数

5 平方数。1 判断下列各数,哪些数不可能是完全平方数?哪些可能是完全平方数?不可能是平方数的是。可能是完全平方数的是。2 1表示一个三位数,在方框上填上合适的数字,使它成为一个完全平方数,符合条件的所有这样的三位数的总和是。3 先仔细观察,找出规律,然后进行计算 那么 1 3 5 7 9 11 2...

五年级奥数

小学2008 2009学年五 下 数学科竞赛卷。一 填一填 每小题3 共30 1 五个数,平均值是100,再加上一个数,平均值增加2 再加上一个数,平均值又增加2,第七个数是 2 小东把一根钢管锯成5段,共需要40分钟,锯成12段要花 分钟。3 在 里填上同一个数,使等式成立。15 60 3 4 从...