第一讲速算与巧算。
在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
例1:计算:9.996+29.98+169.9+3999.5
解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整。
十、整百或整千数,把这几个数“凑整”以后,就容易计算了。当然要记住,“凑整”时增加了多少要减回去。
例2:计算:1+0.
99-0.98-0.97+0.
96+0.95-0.94-0.
93+…+0.04+0.03-0.
02-0.01
解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.
01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.
04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:
例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.
2+0.3+…+0.8+0.
9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.
11+0.12+…+0.19+0.
20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
例4:计算:9.9×9.9+1.99
解:算式中的9.9×9.
9两个因数中一个因数扩大10倍,另一个因数缩小10倍,积不变,即这个乘法可变为99×0.99;1.99可以分成0.
99+1的和,这样变化以后,计算比较简便。
例5:计算:2.437×36.54+243.7×0.6346
解:虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的2.437和后一个乘法的243.
7两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了。
例6:计算:1.1×1.2×1.3×1.4×1.5
解:算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果。
平时注意积累计算经验的同学也许会注意到和13这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如578×1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数。
练习与思考。
五年级奥数 平方数
22 4,32 9,52 25 像 这样的数,推及一般情况,我们把一个自然数平方所得到的数叫做完全平方数或叫做平方数。如。12 1,22 4,32 9,42 16,112 121,122 144,其中1,4,9,16,121,144,都叫做完全平方数。下面让我们观察一下,把一个完全平方数分解质因数后...
五年级奥数平方数
5 平方数。1 判断下列各数,哪些数不可能是完全平方数?哪些可能是完全平方数?不可能是平方数的是。可能是完全平方数的是。2 1表示一个三位数,在方框上填上合适的数字,使它成为一个完全平方数,符合条件的所有这样的三位数的总和是。3 先仔细观察,找出规律,然后进行计算 那么 1 3 5 7 9 11 2...
五年级奥数
小学2008 2009学年五 下 数学科竞赛卷。一 填一填 每小题3 共30 1 五个数,平均值是100,再加上一个数,平均值增加2 再加上一个数,平均值又增加2,第七个数是 2 小东把一根钢管锯成5段,共需要40分钟,锯成12段要花 分钟。3 在 里填上同一个数,使等式成立。15 60 3 4 从...