机械原理课程设计 杆

发布 2022-10-03 06:12:28 阅读 5422

一、概述。

1.课程设计的题目。

此次课程设计的题目是:牛头刨床的主传动结构的设计。

2.课程设计的任务和目的

1)任务:1 牛头刨床的机构选型、运动方案的确定;

2 导杆机构进行运动分析;

3 导杆机构进行动态静力分析;

4.齿轮设计;

5.凸轮机构设计。

2)目的:机械原理课程设计是培养学生掌握机械系统运动方案设计能力的技术基础课程,它是机械原理课程学习过程中的一个重要实践环节。其目的是以机械原理课程的学习为基础,进一步巩固和加深所学的基本理论、基本概念和基本知识,培养学生分析和解决与本课程有关的具体机械所涉及的实际问题的能力,使学生熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,并进一步提高计算、分析,计算机辅助设计、绘图以及查阅和使用文献的综合能力。

3.课程设计的要求。

牛头刨床的主传动的从动机构是刨头,在设计主传动机构时,要满足所设计的机构要能使牛头刨床正常的运转,同时设计的主传动机构的行程要有急回运动的特性,以及很好的动力特性。尽量是设计的结构简单,实用,能很好的实现传动功能。

二。机构简介与设计数据。

1, 机构简介。

牛头刨床是一种用于平面切削加工的机床,如图4。电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。

刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。为此刨床采用有急回作用的导杆机构。刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中没有画出),使工作台连同工件一次进级运动,以便刨刀继续切削。

刨头在工作行程过程中,受到很大的切削阻力(在切削的前后各有一段约0.05h的空刀距离,见图)而空回行程中则没有切削阻力。因此刨头在整个循环运动中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减少电动机容量。

设计数据见表4-1

2)选择设计方案:

方案特点:1、结构简单,制造方便,能承受较大的载荷;

2、具有急回作用,可满足任意行程速比系数k的要求;

3、滑块行程可以根据杆长任意调整;

4、机构传动角恒为90度,传动性能好;

5、工作行程中,刨刀速度较慢,变化平缓符合切削要求;

6、机构运动链较长,传动间隙较大;

三·课程设计的内容和步骤。

1.导杆机构的设计及运动分析。

1)导杆机构简图。

2)导杆机构运动分析。

a、曲柄位置“12”速度分析,加速度分析(列矢量方程,画速度图,加速度图)

取曲柄位置“12”进行速度分析。因构件2和3在a处的转动副相连,故va2=va3,其大小等于ω2lo2a,方向垂直于o2 a线,指向与ω2一致。

2=2πn2/60 rad/s=2.4rad/s

a3=υa2=ω2·lo2a=2.40.11m/s=0.83m/s(⊥o2a)

取构件3和4的重合点a进行速度分析。列速度矢量方程,得。

a4=υa3+υa4a3

大小。方向 ⊥o4a ⊥o2a ∥o4b

取速度极点p,速度比例尺v=0.01 (m/s)/mm ,作速度多边形如下图。

则由上图知,υa4=·μv=44.0354×0.01 =0.440354m/s

a4a3=·μv=70.0374×0.01 =0.700374m/s

由速度影像定理求得,b5=υb4=υa4·o4b/ o4a=0.990241m/s

又4=υa4/ lo4a=1.2222rad/s

取5构件作为研究对象,列速度矢量方程,得。

c5=υb5+υc5b5

大小。方向 ∥xx ⊥o4b ⊥bc

取速度极点p,速度比例尺μv=0.01(m/s)/mm,

则由上图知, υc5=·μv=96.8023×0.01 =0.968023m/s

c5b5=·μv=21.0132×0.01s=0.210132m/s

cb=υc5b5/lcb=0.7201646 rad/s

b.加速度分析:

取曲柄位置“12”进行加速度分析。因构件2和3在a点处的转动副相连,故=,其大小等于ω22lo2a,方向由a指向o2。

2=2.4rad/s, =22·lo2a=6.7020642132×0.11 m/s2=6.25m/s2

取构件重合点a为研究对象,列加速度矢量方程得:

aa4 = aa4n + aa4τ= aa3n + aa4a3k + aa4a3r

大小: ?42lo4a2ω4υa4 a3 ?

方向: ?b→a ⊥o4b a→o2 ⊥o4bo4b

取5构件为研究对象,列加速度矢量方程,得。

ac5 = ab5 + ac5b5n + a c5b5τ

大小42lo4b ωcb2lbc ?

方向 ∥xx ∥a4 c→b ⊥bc

取加速度极点为p',加速度比例尺a=0.08(m/s2)/mm,作加速度多边形如下图所示。

则由速度分析知, ω4=υa4/ lo4a=1.2222rad/s

c5b5=·μv=21.0132×0.01m/s=0.210132m/s

5 =ωcb=υc5b5/lcb=0.7201646 rad/s

aa4n=6.75m/s2aa4a3k=21.4m/s2

aa4= aa3 =pa4′·μa=88.0512×0.08m/s=7.

044096m/s2,用加速度影象法求得ab5 = ab4 =2.980124×810/360m/s2 = 23.840992m/s2

所以ac=0.08×(p’c’)=15.960312m/s2

总结12点的速度和加速度值以速度比例尺v=(0.01m/s)/mm和加速度比例尺a=(0.08m/s)/mm用相对运动的**法作该两个位置的速度多边形和加速度多边形如上两图,并将其结果列入**。

a、 曲柄位置“5”速度分析,加速度分析(列矢量方程,画速度图,加速度图)

取曲柄位置“5”进行速度分析。因构件2和3在a处的转动副相连,故va2=va3,其大小等于ω2lo2a,方向垂直于o2 a线,指向与ω2一致。

2=2πn2/60 rad/s=2.4rad/s

a3=υa2=ω2·lo2a=2.4×0.11m/s=0.83m/s(⊥o2a)

取构件3和4的重合点a进行速度分析。列速度矢量方程,得。

a4=υa3+υa4a3

大小。方向 ⊥o4a ⊥o2a ∥o4b

取速度极点p,速度比例尺v=0.01(m/s)/mm ,作速度多边形如下图。

则由上图知, υa4= pa4*μv =0.81021m/s

a4a3= a3a4*μv =0.18503m/s

由速度影像定理求得,b5=υb4=υa4·o4b/ o4a=1.2222m/s

又4=υa4/ lo4a=1.51rad/s

取5构件作为研究对象,列速度矢量方程,得。

c= υb+ υcb

大小。方向 ∥xx ⊥o4b ⊥bc

则由前图知, υc=1.21203m/s

cb=0.070137m/s

cb=υcb/lcb=0.63443rad/s

b.加速度分析:

取曲柄位置“5”进行加速度分析。因构件2和3在a点处的转动副相连,故=,其大小等于ω22lo2a,方向由a指向o2。

2=2.4rad/s

=ω22·lo2a=(2.4)2×0.11m/s2=6.25m/s2

取构件重合点a为研究对象,列加速度矢量方程得:

aa4 = aa4n + aa4τ= aa3n + aa4a3k + aa4a3r

大小。方向: ?b→a ⊥o4b a→o2 ⊥o4bo4b

aa4n=1.2244137m/s2aa4a3k=0.5587906m/s2

取5构件为研究对象,列加速度矢量方程,得。

ac5= ab5+ ac5b5n+ a c5b5τ大小。

机械原理课程设计

旋转型灌装机。学院 汽车与交通。专业 车辆工程。班级 车辆123 姓名 学号 指导老师 韦丹柯。日期 2014.6.30 1.设计题目。1.1 设计条件。1.2 设计任务。1.3 设计提示。2.原动机的选择。3.传动比分配。4.传动机构的设计。4.1 减速器设计。4.2 第二次减速装置设计 4.3 ...

机械原理课程设计

题目7 专用精压机设计 4人 一 工作原理及工艺动作过程。专用精压机是用于薄壁铝合金制件的精压深冲工艺,它是将薄壁铝板一次冲压成为深筒形。如图1 a 所示,上模先以比较小的速度接近坯料,然后以匀速进行拉延成形工作,以后,题目7 专用精压机设计 4人 一 工作原理及工艺动作过程。专用精压机是用于薄壁铝...

机械原理课程设计

1设计题目 牛头刨床。1.为了提高工作效率,在空回程时刨刀快速退回,即要有急会运动,行程速比系数在1.4左右。2.为了提高刨刀的使用寿命和工件的表面加工质量,在工作行程时,刨刀要速度平稳,切削阶段刨刀应近似匀速运动。3.曲柄转速在60r min,刨刀的行程h在300mm左右为好,切削阻力约为7000...