实验题目一: 线性规划建模。
一、 实验目的。
1、 了解线性规划问题在excel中如何建立,主要是数据单元格、输出单元格、可变单元格和目标单元格定义以及规划求解宏定义应用设置。
2、 熟练掌握excel规划求解宏定义模块使用。
3、 掌握lindo软件**性规划求解中的应用。
二、 实验内容。
某医院院周会上正在研究制定一昼夜**值班安排计划。在会议上,护理部主任提交了一份全院24小时各时段内需要在岗**的数量报告,见下表。
如果按照每人每天两小班轮换,中间间隔休息时间8小时,这样安排岗位不但会造**员冗余,同时护理人员上下班不是很方便。由于医院护理工作的特殊性,又要求尽量保证护理人员工作的连续性,最终确定每名**连续工作两个小班次,即24小时内一个大班8小时,即连续上满两个小班。为了合理的压缩编制,医务部提出一个合理化建议:
允许不同**的大班之间可以合理相互重叠小班,即分成六组轮班开展全天的护理值班(每一个小班时段实际上由两个交替的大班的前段和后段共同承担)。
现在人力部门面临的问题是:如何合理安排岗位,才能满足值班的需要?正在会议结束之前,护理部又提出一个问题:
目前全院在编的正式**只有50人,工资定额为10元/小时;如果人力部门提供的定编超过50人,那么必须以15元/小时的薪酬外聘合同**。一但出现这种情况又如何安排上述班次?保卫处后来又补充到,最好在深夜2点的时候避免**,这样又如何安排班次?
请结合会议情况,撰写一份方案分析报告。
三、 实验分析报告。
根据各部门提出的意见,预备提出四种备选方案,各方案分析如下:
1、 没考虑定编上限和保卫处的建议。
令2:00-6:00-10:
00,6:00-10:00-14:
00,10:00-14:00-18:
00,14:00-18:00-22:
00,18:00-22:00-2:
00,22:00-2:00-6:
00时段的大班开始上班的人数分别为x1, x2, x3, x4, x5, x6. 由此可得的2:00-6:
00,6:00-10:00,10:
00-14:00,14:00-18:
00,18:00-22:00,22:
00-2:00各小班人数为x1+x6, x1+x2 , x2+x3, x3+x4, x4+x5, x5+x6.
可得线性规划问题如下:目标函数为要求所需开始上班的人数最小,约束条件为由各大班开始上班人数所得的各小班人数必须大于规定的小班需要**量。
minz=x1+x2+x3+x4+x5+x6
x1+x6>=10 ,x1+x2>=15
x2+x3>=25 ,x3+x4>=20
x4+x5>=18 ,x5+x6>=12
x1~x6>=0,且x1~x6为整数。
在不考虑定编上限和保卫处的建议的情况下,在满足正常需要的情况下医院最少需要53名**。
具体安排如下:
从表中可以看出在早上6点到10点安排人数超出3人用来应付早晨医院看病的人的高峰期,晚上安排人数超过两人主要是防止夜晚发生突发状况。
2、 不考虑保卫处建议只考虑护理部的建议,因为目前医院在编的正式**只有50人,工资定额为10元/小时;因为人力部门提供的定编为53人,那么必须以15元/小时的薪酬外聘3名合同**。
令2:00-6:00-10:
00,6:00-10:00-14:
00,10:00-14:00-18:
00,14:00-18:00-22:
00,18:00-22:00-2:
00,22:00-2:00-6:
00时段的大班开始上班的人数分别为x1, x2, x3, x4, x5, x6. 需要外聘的人数为y1, y2, y3, y4, y5, y6 由此可得的各小班2~6,6~10,10~14,14~18,18~22,22~2人数为x1+x6+y1+y6, x1+x2+y1+y2 , x2+x3+y2+y3, x3+x4+y3+y4, x4+x5+y4+y5, x5+x6+y5+y6.
可得线性规划问题如下:
minz=80*(x1+x2+x3+x4+x5+x6)+120*(y1+y2+y3+y4+y5+y6)
x1+x6>=10 ,x1+x2>=15
x2+x3>=25 ,x3+x4>=20
x4+x5>=18 ,x5+x6>=12
x1+x2+x3+x4+x5+x6<=50
x1~x6>=0,x1~x6为整数。
y1~y6>=0,y1~y6为整数。
在支出工资额最小的情况下具体安排如下:
这种安排方式需要外聘3名**分别安排在下午两点到晚上十点和晚上十点到早晨六点,这样安排可以尽量让本院的**避开深夜值班,充分休息应付医院白天的工作,同时晚上有充足数量的**值班以免发生突发状况。在早上6点到10点安排人数超出4人用来应付早晨医院看病的人的高峰期,但是在下午两点到六点这段时间有两名**处于空闲,浪费资源。
3、 不考虑护理部建议只考虑保卫处建议,即不考虑定编上限,只考虑在深夜2点钟时没有**交**,故将2:00-6:00-10:00这个时段的值班**数量定为零。
令2:00-6:00-10:
00,6:00-10:00-14:
00,10:00-14:00-18:
00,14:00-18:00-22:
00,18:00-22:00-2:
00,22:00-2:00-6:
00时段的大班开始上班的人数分别为x1, x2, x3, x4, x5, x6.
在lingo中编写目标函数并进行运算。
minz=x1+x2+x3+x4+x5+x6
x1+x6>=10 ,x1+x2>=15
x2+x3>=25 ,x3+x4>=20
x4+x5>=18 ,x5+x6>=12
x1~x6>=0,x1=0,x1~x6为整数。
在满足正常需要的前提下,医院仍需要53名**,具体安排如下:
在满足保卫处建议的情况下,各个小班人员安排如表中,从早晨两点到晚上十点,体现了医院对在职人员的人文关怀。**人员的数量都刚刚满足正常需要,在晚上十点到早晨两点有六人富余,这样安排不能满足白天发生的应急情况,从管理的角度这个方案不是很适合医院的正常工作。
4、 在考虑护理部建议和保卫处建议的前提下,将2:00-6:00-10:00这个班次值班的**数量定为零,考虑到要外聘**。
令2~6~10, 6~10~14, 10~14~18, 14~18~22, 18~22~2, 22~2~6时段的大班开始上班的人数分别为x1, x2, x3, x4, x5, x6. 需要外聘的人数为y1, y2, y3, y4, y5, y6 由此可得2~6,6~10,10~14,14~18,18~22,22~2的各小班人数为x1+x6+y1+y6, x1+x2+y1+y2 , x2+x3+y2+y3, x3+x4+y3+y4, x4+x5+y4+y5, x5+x6+y5+y6.
可得线性规划问题如下:
minz= (x1+x2+x3+x4+x5+x6)*80+(y1+y2+y3+y4+y5+y6)*120
x1+x6>=10 ,x1+x2>=15
x2+x3>=25 ,x3+x4>=20
x4+x5>=18 ,x5+x6>=12
x1+x2+x3+x4+x5+x6<=50
x1~x6>=0,x1=0,x1~x6为整数。
y1~y6>=0,y1=0,y1~y6为整数。
在支出工资额最小并能满足医院正常需要的目标下得到如下安排:
这种方案中外聘的三名**分别安排在早上十点到下午六点和下午两点到晚上十点,还有晚上六点到晚上十点,这样安排不利于本院**的正常休息,在早上六点到十点值班**富余两人,在下午两点到六点富余一人,在晚上十点到凌晨两点富余三人,人员利用率没有达到最高,但在考虑医院环境的特殊性(随时发生突发状况)下,和其他几种方案相比较这种方案在执行方面较好。
实验题目二:建立运输模型。
1、模型建立。
引入决策变量xij,代表从第i个分公司到第j个销售区的货物运量。用符号cij表示从第i个分公司到第j个销售区的单位货物运价,pi表示第i个分公司的日产量,dj表示第j个销售区的订货量。(i=1,2,3;j=1,2,3,4)
运筹学上机实验报告
学生实验报告。实验课程名称运筹学。开课实验室计算机中心第二机房 学院专业 学生姓名学号。开课时间 2015 至 2016 学年第二学期。实验一中小型线性规划模型的求解与lingo软件的初步使用。一 实验目的。了解lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。二 实验内容。1.在l...
运筹学上机实验报告
西安邮电大学。院系 经济与管理学院 班级 电子商务1201 姓名邓博。学号 02122023 实验一 线性规划与对偶理论。线性规划。启动程序 开始 程序 winqsb liear and integer programming file new problem 输入变量数3 约束数3 目标最大化 默...
运筹学上机实验
实验一。用lindo软件实现简单线性规划模型的计算机求解。一。实验目的 了解lindo软件的基本功能和简单线性规划模型的求解的输入和输出结果。二。实验内容 1.建立第二章补充习题的数学模型并用lindo求解。2.建立教材p57习题2.9的数学模型并用lindo求解。三。实验要求 1.给出所求解问题的...