五年级数学上册重难点突破

发布 2022-07-24 17:08:28 阅读 9819

《小数乘法》重难点突破。

一、理解小数乘整数的算理,掌握小数乘整数的一般方法。

突破建议:1.充分利用主题图展示的数学信息(风筝单价及要解决的问题),为学生理解算理提供感性支撑。教学中可以放手让学生利用已有的知识经验独立解决“买3个蝴蝶风筝多少钱”的问题,学生解答后,从中选出一种较为简单的方法(如35角×3)进行重点分析、说理,引导学生用简洁的语言进行总结和概括:

先把3.5元转化为35角,再计算35角×3,最后将结果105角转化为10.5元。

从而通过“元、角”这些具体量的进率关系,初步为算理的理解提供感性支撑,为后面例2的教学做好铺垫。

2.引导学生运用“转化”的思想方法,通过旧知迁移,理解和掌握新知。要注意引导学生紧紧抓住例1中的计算经验,特别是“将3.5元转化为35角”的经验来学习例2。

放手让学生应用已有的整数乘法经验自主计算“0.72×5”,列出竖式,并尝试对过程做出合理的解释,有效地突破难点。

3.及时引导学生梳理和总结小数乘整数的竖式计算要点。在学生理解上述算理的基础上,重点引导学生归纳用竖式计算的要点:①按整数乘法的规则进行计算;②处理好积中小数点位置的确定,因数中一共有几位小数,积中也应有几位小数;③如果积的小数部分末尾有0,应根据小数的基本性质去掉小数末尾的“0”。

二、积的小数数位不够时如何确定小数点的位置。

突破建议:1.在教学小数乘小数及相应的练习中,应结合具体的计算实例组织学生观察、比较因数与积的小数位数,引导学生发现因数与积的小数位数之间的关系,为正确确定积的小数点的位置提供操作依据。

2.在教学例4时,可以先放手让学生按照一般方法计算,引出“乘得的积的小数位数不够,怎么点小数点?”的问题,教师再来引导学生去寻找解决问题的办法,让学生自己想到可以根据小数点移动引起小数大小的变化规律来解决问题,理解乘得的积的小数位数不够时,应该先在前面用0补足,再点小数点,让学生经历发现问题——解决问题的学习过程,留下较为深刻的印象。

3.设计具有针对性的练习(不一定要完整的计算),让学生明确:①一定要数清楚两个因数中小数的位数,弄清楚应补上几个0;②确定积的小数点位置时,应先点上小数点,然后再把小数末尾的0去掉。

三、理解“倍”可以是小数,能解决求一个数的小数倍的实际问题,掌握计算方法。

突破建议:1.激活已有经验,帮助学生扩充“倍”的认识。学生在第一学段已经对“倍”有了初步认识,对两个数量之间“倍”的关系并不陌生,知道求一个数的几倍是多少用乘法计算。

在本课教学时,教师应帮助学生激活已有的旧知,让学生先解决整数倍的数学问题,并说一说列式的理由,以利于学生在分析、解决“小数倍”的问题时,能从对整数倍的认识扩充到对“小数倍”的认识。

2.借助具体事例,引导学生理解小数倍的含义。在教学例5时,可以借助生动的情境,让学生用自己的方式读题,再用自己的话表述题意。在表述“鸵鸟的最高速度是非洲野狗的1.

3倍”时,应尽可能给学生创设表述的空间,让学生充分表述自己的理解,着重是对“1.3倍”含义的理解,从具体事件中领会“倍”不仅可以是整数,也可以是小数,有时用小数倍表示两个数量之间的关系更为直观。

四、理解求积的近似数往往是“实际应用”的需要。

突破建议:1.在教学“积的近似数”时,可以明确揭示求“积的近似数”的背景与一般方法:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。

2.在例题教学中,可借助教材创设的情境,从例题给出的信息“人的嗅觉细胞约有0.049亿个”和要解决的问题“狗约有多少亿个嗅觉细胞?”使学生认识到,生活实际中有些小数我们既无可能、又无必要知道它们的准确值,只要知道它们的近似数就可以了,使学生感受到求积的近似数是“实际应用”的需要。

3.选择、设计一些与求积的近似数有关的实际问题,让学生在解决问题的过程中辨析、体会。如:教材第13页第3题求“这台计算机有多重?

”为什么要“得数保留整数”?又如:教材第11页“做一做”第2题求“买2.

5 kg应付多少钱?”为什么没有明确提出求近似数的要求,但也要自觉地“得数保留两位小数”?使学生在解决问题的过程中,体会到求积的近似数不是随意的要求,而确实是“实际应用”的需要。

五、应用乘法运算定律进行小数的简便计算。

突破建议:1.在教学将整数乘法运算定律推广到小数时,教师要通过具体的例子引导学生亲身经历“推广”的过程,在“推广”的过程中理解整数乘法运算定律对于小数乘法也适用,使学生明确,现在乘法运算定律中数的适用范围不仅包括整数,也包括小数。

2.在教学应用乘法运算定律进行小数的简便计算时,教师要重视培养学生思维的逻辑性,着重引导学生交流简便计算的思维顺序,根据算式的结构和数据的特点怎样算比较简便?第一步应该怎样将算式变换?应用的是哪一条运算定律?

第二步又该怎样做?

3.应用乘法分配律进行简便计算是学生容易出错的地方,教师要注意分析学生出错的原因,加强就题说理练习。在乘法分配律的应用中,既有乘法分配律的正向应用,也有乘法分配律的逆向应用。因此,要适当进行乘法分配律算式结构的正向和逆向的变换训练,提高学生应用乘法分配律解决问题的能力。

六、根据实际问题和数据选择适当的估算策略。

突破建议:1.关注估算思路,注重方法指导。在教学过程中,引导学生完整地叙述自己的估算思路,教师组织学生及时反思“这样估算行吗”“这样估算有什么好处”“有什么需要改进的地方”等问题,及时有效地对学生的估算思路进行指导。

2.加强对比沟通,体会策略多样。在教学过程中,由于学生生活经验不同,会产生不同的估算方法,教师要主动对典型估算方法进行展示,引导学生体会估算方法的多样性。与此同时,还需要加强不同估算方法之间的对比沟通,如“这两种估算方法的相同点和不同点是什么”,从而让学生体会估算的本质就是“近似计算”,根据具体数据和实际问题选择不同的处理方法,就会产生不同的估算策略。

七、引导学生对分段计费问题的规律进行探寻。

1.要重视引导学生理解题意,尤其是对“收费标准”的理解,因为它直接关系到如何根据里程确定怎样分段。教学中,教师可以设计如下问题:①“3 km以内7元”是什么意思?

②从什么时候开始按每千米1.5元收费?③假如行驶了3.

1 km,应付车费多少元?④行驶3.1 km和行驶4 km,应付的车费同样多吗?

为什么?通过这些理解性的问题帮助学生明确收费标准。

2.在完成了例题的“分析与解答”后,教师可沿用例题情境进行适当的变式练习,如:①如果行驶的里程是8.4 km,你们还能用刚才的方法计算出车费吗?

②如果行驶的里程是9.8 km呢?让学生通过算式的对比,发现“分段计费”的方法都是用7元加后段里程车费,用“先假设再调整”的方法都是用假设车费再加上2.

5元。在学生发现规律后,再来引导学生进一步探索,分析其中的原因。

3.在例题的“回顾与反思”中,教师不仅要让学生完成教材上的出租车**表,还应引导学生观察表中的数据,探索其中的规律。教师也可以用图象来表示行驶里程与出租车费之间的关系,让学生直观感受分段计费的特点和规律。

位置》重难点突破。

一、在具体情境中用数对确定物体的位置。

突破建议:1、充分利用情境,不要急于抽象。教学时,教师应该充分利用好教材中呈现的各种具体情境图,引导学生**(在平面中)确定一个物体的位置的方法。

第一课时在熟悉的教室座位情境中,引导学生明确“行、列的含义”“确定行、列的一般规则”“用数对表示某个同学的位置”,体会到唯一性,一步一步,层层推进,为第二课时的抽象打下基础。本课时还要完成练习五中的第1题至第5题,每道题都是在生活情境中巩固应用数对。教师要变化形式,让学生在丰富的生活情境中巩固数对。

2、结合具体情境,亲历建模过程。在本节课中,要从真实的课堂情境引入,真实地展开学生学***的过程。教学时可分三步实施:

第一步,结合具体的情境,说一说张亮同学的位置。由于个人生活经验不同,学生的表示方法会各不相同。

第二步,将学生的生活经验提升、抽象,揭示行、列的含义以及确定行、列的一般规则,引出数学表示方法──“数对”,感受到“数对”的简洁性和准确性。

第三步,能用“数对”表示示意图上或班级同学的位置,以及根据所给的“数对”确定现实中物体的位置。从学生的经验中逐步抽象出数学的表示方法,符合学生的由具体到抽象、由特殊到一般的数学认知规律,有助于学生理解数对在确定位置中的作用。

在经历“数对”这一概念的建模过程中,要让学生展开“数学化”的探索和数学思考,而行、列的含义以及确定行、列的一般规则等则需要教师揭示。在建立数学概念的同时,让学生感受数的顺序及一一对应(数对与物体位置的对应关系)。

二、在具体情境中理解要用两个数表示物体在平面上的位置。

突破建议:1、复习旧知,做好衔接。例1是学习用数对(两个数)来确定一个物体在平面中的位置。

在此之前,学生已经积累了一些关于描述物体位置的学习经验和生活经验:在一年级的《位置》单元,学生认识上、下、前、后、左、右这几个方位,并能描述简单的位置关系;在三年级下册的《位置和方向(一)》单元,学生会辨认八个方向等。所以教学时可设计复习铺垫,明确“确定一个物体在直线上的位置只需要一个数”,那“确定一个物体在平面中的位置”需要几个数呢?

由“线”推广到“面”,从而为引出数对做好充分的铺垫。

2、引发矛盾,逐渐统一。虽然数对的表示方式和含义都是有着统一规定的,但教师也不可让学生死背硬记,要耐心给足时间,创设三次矛盾冲突,让学生一次次体会到“统一规则”的必要性,从而自然理解数对的规则和含义。将用生活经验描述位置上升为用数学方法确定位置,发展学生的应用意识和空间观念。

1)统一“行”“列”的含义。

受生活中口语的影响,学生喜欢用“第几条第几个”“第几竖条第几个”“第几横排第几个”之类的语言描述位置,而规范的数学语言是“第几行第几列”“第几列第几行”。教师需要引导学生把“生活语言”统一成规范的“数学语言”。

2)统一“确定行、列的一般规则”。

在生活中,人们可以依照自己的习惯去数“第几行”“第几列”,不论是从右起,还是从左起,都能表示出物体的位置。引导学生体会“行”“列”的方向若没有规定会很混乱,从而产生统一“行、列规则”的需求。明确一般情况下,数“列”是从左往右数;数“行”是从下往上数。

统一方向和规则,就会避免歧义。

3)统一“数的顺序”及一一对应(数对与物体位置的对应关系)。

五年级数学上册重难点

第一单元小数乘法。1 小数乘法整数算,不同之处积中看,因数中一共有几位小数,积也应该有几位小数,小数末尾0去掉。如3.2 4 0.8 积有一位小数,因数中一共也有一位小数。0.25 4 1 2 位数不够0补足。3 倍数应用题,求多的用 求少的用 求多少倍用 4 一个数 0除外 大于1的数,积比原来的...

六年级数学上册《总复习》重难点突破

六年级数学上册 总复习 重难点突破。一 梳理知识要领,完善知识结构突破建议 既要让学生掌握复习中所蕴含的知识概貌,又要让学生在复习过程中明晰复习脉络,从而把握知识点之间的联系,明晰核心知识和重难点,还要通过复习使学生知晓基本的知识运用范围,以及对应的应用题型。例如 对分数乘 除法知识的复习,就要在理...

六年级数学上册《总复习》重难点突破

六年级数学上册 总复习 重难点突破。一 梳理知识要领,完善知识结构突破建议 既要让学生掌握复习中所蕴含的知识概貌,又要让学生在复习过程中明晰复习脉络,从而把握知识点之间的联系,明晰核心知识和重难点,还要通过复习使学生知晓基本的知识运用范围,以及对应的应用题型。例如 对分数乘 除法知识的复习,就要在理...