《2023年高考数学总复习系列》高中数学必修一

发布 2021-12-22 15:57:28 阅读 2275

2023年高考数学复习宝典。

目录。一、2023年高考数学全部知识点整理+经典例题详细解析。

高中数学必修。

一、高中数学必修。

二、高中数学必修。

三、高中数学必修四、

高中数学必修。

五、高中数学选修2-1、高中数学选修2-2、高中数学选修2-3

高中数学选修4-5

二、【内部资料】2009-2023年高考数学模拟压轴大题总结+详细解析。

2023年高考数学总复习系列》——高中数学必修一。

第一章、集合。

一、基础知识(理解去记)

定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合a中,称属于a,记为,否则称不属于a,记作。

例如,通常用n,z,q,b,q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如;描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如,分别表示有理数集和正实数集。

定义2 子集:对于两个集合a与b,如果集合a中的任何一个元素都是集合b中的元素,则a叫做b的子集,记为,例如。规定空集是任何集合的子集,如果a是b的子集,b也是a的子集,则称a与b相等。

如果a是b的子集,而且b中存在元素不属于a,则a叫b的真子集。

便于理解:包含两个意思:①a与b相等 、②a是b的真子集。

定义3 交集,定义4 并集,定义5 补集,若称为a在i中的补集。

定义6 集合记作开区间,集合。

记作闭区间,r记作。

定义7 空集是任何集合的子集,是任何非空集合的真子集。

补充知识点对集合中元素三大性质的理解。

1)确定性。

集合中的元素,必须是确定的.对于集合和元素,要么,要么,二者必居其一.比如:“所有大于100的数”组成一个集合,集合中的元素是确定的.而“较大的整数”就不能构成一个集合,因为它的对象是不确定的.再如,“较大的树”、“较高的人”等都不能构成集合.

2)互异性。

对于一个给定的集合,集合中的元素一定是不同的.任何两个相同的对象在同一集合中时,只能算作这个集合中的一个元素.如:由,组成一个集合,则的取值不能是或1.

3)无序性。

集合中的元素的次序无先后之分.如:由组成一个集合,也可以写成组成一个集合,它们都表示同一个集合.

帮你总结:学习集合表示方法时应注意的问题。

1)注意与的区别.是集合的一个元素,而是含有一个元素的集合,二者的关系是.

2)注意与的区别.是不含任何元素的集合,而是含有元素的集合.

3)在用列举法表示集合时,一定不能犯用{实数集}或来表示实数集这一类错误,因为这里“大括号”已包含了“所有”的意思.

用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,它应具备哪些特征性质,从而准确地理解集合的意义.例如:

集合中的元素是,这个集合表示二元方程的解集,或者理解为曲线上的点组成的点集;

集合中的元素是,这个集合表示函数中自变量的取值范围;

集合中的元素是,这个集合表示函数中函数值的取值范围;

集合中的元素只有一个(方程),它是用列举法表示的单元素集合.

4)常见题型方法:当集合中有n个元素时,有2n个子集,有2n-1个真子集,有2n-2个非空真子集。

二、基础例题(必会)

例1 已知,,求.

正解:,.解析:这道题要注意研究的元素(看竖线前的元素),均是y,所以要求出两个集合中y的范围再求交集,a中的y范围是求表达式的值域、因此此题是表示两个函数值域的集合.

例2 若,且,试求实数.

正解:∵a∩b={2,5},∴由,解得或.

当a=1时,与元素的互异性矛盾,故舍去;

当时,,此时,这与矛盾,故又舍去;

当时,,,此时满足题意,故为所求.

解析:此题紧紧抓住集合的三大性质:①确定性 ②互异性 ③无序性。

三、趋近高考(必懂)

1.(2023年江苏高考1)设集合a=,b=,a∩b=,则实数a

方法:将集合b两个表达式都等于3,且抓住集合三大性质。【答案】1.

2.(2010.湖北卷2.)设集合a=,b=,则a∩b的子集的个数是( )

a. 4 b.3 c.2 d.1

方法:注意研究元素,是点的形式存在,a是椭圆,b是指数函数,有数形结合方法,交于两个点,说明集合中有两个元素,还要注意,题目求子集个数,所以是22=4【答案】a

集合穿针转化引线(最新)

一、集合与常用逻辑用语。

3.若,则是的( )

(a)充分条件b)必要条件。

(c)充要条件d)既不充分又不必要条件。

解析:∵,即或,∴.

∵,即或,∴.

由集合关系知:,而.

∴是的充分条件,但不是必要条件.故选(a)

4. 若,则“”是“方程表示双曲线”的( )

(a)充分条件b)必要条件。

(c)充要条件d)既不充分又不必要条件。

解析:方程表示双曲线。

或.故选(a).

二、集合与函数。

5.已知集合,那么等于( )

(a)(0,2),(1,1) (b){(0,2),(1,1)}

(c){1,2d)

解析:由代表元素可知两集合均为数集,又p集合是函数中的y的取值范围,故p集合的实质是函数的值域.而q集合则为函数的定义域,从而易知,选(d).

评注:认识一个集合,首先要看其代表元素,再看该元素的属性,本题易因误看代表元素而错选(b)或(c)

三、集合与方程。

6.已知,且,求实数p的取值范围.

解析:集合a是方程的解集,则由,可得两种情况:

①,则由,得 ;

②方程无正实根,因为,则有于是.

综上,实数p的取值范围为.

四、集合与不等式。

7. 已知集合,若,求实数m的取值范围.

解析:由不等式恒成立,可得。

(1)当,即时,(※式可化为,显然不符合题意.

(2)当时,欲使(※)式对任意x均成立,必需满足。

即。解得 .

集合b是不等式的解集,可求得,结合数轴,只要即可,解得 .

五、集合与解析几何。

例6 已知集合和,如果,求实数m的取值范围.

解析:从代表元素看,这两个集合均为点集,又及是两个曲线方程,故的实质为两个曲线有交点的问题,我们将其译成数学语言即为:“抛物线与线段有公共点,求实数m的取值范围.”

由,得。∵,∴方程①在区间[0,2]上至少有一个实数解.

首先,由,得或.

当m≥3时,由及知,方程①只有负根,不符合要求;

当时,由及知,方程①有两个互为倒数的正根,故必有一根在区间内,从而方程①至少有一个根在区间[0,2]内.

综上,所求m的取值范围是.

第二章、函数。

一、基础知识(理解去记)

定义1 映射,对于任意两个集合a,b,依对应法则f,若对a中的任意一个元素x,在b中都有唯一一个元素与之对应,则称f: a→b为一个映射。

定义2 函数,映射f: a→b中,若a,b都是非空数集,则这个映射为函数。a称为它的定义域,若x∈a, y∈b,且f(x)=y(即x对应b中的y),则y叫做x的象,x叫y的原象。

集合叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为。

定义3 反函数,若函数f: a→b(通常记作y=f(x))是一一映射,则它的逆映射f-1: a→b叫原函数的反函数,通常写作y=f-1(x).

这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x, y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:

函数y=的反函数是y=1-(x0).

补充知识点:

定理1 互为反函数的两个函数的图象关于直线y=x对称。

定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。

定义4 函数的性质。

1)单调性:设函数f(x)在区间i上满足对任意的x1, x2∈i并且x1< x2,总有f(x1)f(x2)),则称f(x)在区间i上是增(减)函数,区间i称为单调增(减)区间。

2)奇偶性:设函数y=f(x)的定义域为d,且d是关于原点对称的数集,若对于任意的x∈d,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈d,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

3)周期性:对于函数f(x),如果存在一个不为零的常数t,使得当x取定义域内每一个数时,f(x+t)=f(x)总成立,则称f(x)为周期函数,t称为这个函数的周期,如果周期中存在最小的正数t0,则这个正数叫做函数f(x)的最小正周期。

定义5 如果实数aa}记作开区间(a, +集合记作半开半闭区间(-∞a].

定义6 函数的图象,点集称为函数y=f(x)的图象,其中d为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b>0);

1)向右平移a个单位得到y=f(x-a)的图象;

2)向左平移a个单位得到y=f(x+a)的图象;

3)向下平移b个单位得到y=f(x)-b的图象;

4)与函数y=f(-x)的图象关于y轴对称;

5)与函数y=-f(-x)的图象关于原点成中心对称;

6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。

定理3 复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y=, u=2-x在(-∞2)上是减函数,y=在(0,+∞上是减函数,所以y=在(-∞2)上是增函数。

2023年高考数学总复习系列

2011年高考数学总复习系列 高中数学选修2 2 第一章导数及其应用。无论哪个省市的考题中可以看出,一定会重视对导数的考察,所以同学一定将导数学细学精!基础知识 理解去记 1 极限定义 1 若数列满足,对任意给定的正数 总存在正数m,当n m且n n时,恒有 un a 成立 a为常数 则称a为数列u...

2023年高考数学总复习系列新人教版必修三

2011高考数学复习必修3 在各省市中,必修三算法 统计 初等概率 选修部分是重点 不会考解答大题,所以同学要重视这本书中的选择填空题!一 基础知识 理解去记 1 四种基本的程序框。2 三种基本逻辑结构。顺序结构条件结构循环结构。3 基本算法语句。一 输入语句。单个变量。多个变量。二 输出语句。三 ...

2023年高考数学总复习系列新人教版选修

2011年高考数学总复习系列 高中数学选修2 1 第一章常用逻辑用语。特别注意 本章历来不做重点,只需知道 且 或 非 的特点即可。一 基础知识 理解去记 1.充要条件的判定可利用集合包含思想判定 若,则a是b的充分条件 若,则a是b的必要条件 若且即,则a是b的充要条件。2.充要条件的问题要十分细...