级数是考研数学卷种数学。
一、数学三试卷中的常客,在高等数学中,级数的抽象性和综合性都达到了一个高峰,唯有多思考,多练习,才能翻越这座高峰。下面老师就来及时跟刚刚从考场里面走出来的16考研学子和备战中的17考研学子们一起谈谈今年的级数题型。
考研数学大纲对于级数部分,只对数学一和数学三的考生有要求,但在具体的要求层次上还是有很大差别的。比如说级数收敛,发散及收敛级数和的概念上数学一要求的是理解,而数学三只是了解。所以,从真题的角度,数学一就可以在概念上出大题。
同时,数学一要求掌握交错级数的莱布尼茨判别法,而数学三只是了解。数学一考查绝对收敛和条件收敛的情况较多,还有对幂级数展开和求和,数学一是二者都要掌握,而数学三侧重于求和。这都要求考生熟练利用常用的已知函数的幂级数展开式,同时结合拆分、逐项求导和逐项积分的方法来进行操作解答。
今年的选择题和解答题都出现了级数题目,比如数三卷的选择题第4题:
通过分析,我们看到这道真题是利用级数敛散性的定义和绝对收敛的定义来求解即可,这也充分体现了我们一贯强调的基本概念的重要性,因此考生们一定要注重数学的“三基”,即基本概念、基本理论、基本方法,大家只要牢牢抓住这三个基本,本题便可迎刃而解,在此海文老师祝愿16的考研学子这个类型题目都全部拿下,收获满满。
对于备战中的17考研学子,建议同学们要清楚级数这章的知识体系,要把知识结构搞清楚,区分绝对收敛和条件收敛以及常数项级数收敛性质。然后,同学们应该记住常见的收敛级数,比如p级数及几何级数,清楚常见函数的麦克劳林公式。最后,同学们应该多做真题,进一步熟悉知识点,在做的过程中要学会总结,形成自己的知识体系和方法。
最后祝考研学子们金榜题名!
2019考研数学真题解析
2012考研数学真题解析 基础,永恒的重点。2012年考研数学试题的试题较之2011年难度有所上升,体现在综合性 灵活性均有一定程度的提高。但这绝不说明我们在复习时可以轻视基础而以难题偏题为重。相反,细究2012年考研数学的试题,考题的对考生的能力要求主要还是体现在对基本概念的认识与理解,对基本理论...
2023年考研数学 三 真题解析
1 分析 本题为等价无穷小的判定,利用定义或等价无穷小代换即可。详解 当时,故用排除法可得正确选项为 b 事实上,或。所以应选 b 评注 本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算。类似例题见 数学复习指南 经济类 第一篇 例1.54 例1.55 2 分析 本题考查可导的极限定义...
2023年考研数学 三 真题解析
1 分析 本题为等价无穷小的判定,利用定义或等价无穷小代换即可。详解 当时,故用排除法可得正确选项为 b 事实上,或。所以应选 b 评注 本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算。类似例题见 数学复习指南 经济类 第一篇 例1.54 例1.55 2 分析 本题考查可导的极限定义...