北师大版八年级数学下册第四单元相似图形单元测试题

发布 2020-11-14 00:46:28 阅读 8516

第四章相似图形测试题。

. 梳理知识。

1.三角形相似的条件。

1两三角形相似。(2两三角形相似。(3两三角形相似。

2.如何寻找和发现相似三角形。

两个三角形相似,一般说来必须具备下列六种图形之一:

只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决。

3.相似三角形与相似多边形的性质。

1)相似三角形的性质。

相似三角形的三边三角 .

相似三角形的与都等于相似比。

相似三角形周长之比等于相似三角形面积之比等于。

2)相似多边形的性质。

相似多边形的对应边 ,对应角 .②相似多边形的对角线之比、周长之比都等于。

相似多边形面积之比等于。

4.几何变换(按一定的方法把一个图形变成另一个图形)

1)相似变换:保持图形的形状不变的几何变换叫做相似变换。

2)位似变换。

位似图形:如果两个图形不仅是图形,而且每组对应点所在的直线都那么这样的两个图形叫做位似图形,这个点叫做 ,这时的相似比又称为 .

位似图形的性质:位似图形上任意一对对应点到的距离之比等于位似比。

5.相似三角形的应用——测量旗杆的高度(利用阳光下的影子;利用标杆;利用镜子的反射。)

. 典例剖析。

例1.如图,de∥bc,sδdoe∶sδcob=4∶9,求ad∶bd.

例2.如图,四边形abcd是平行四边形,ae⊥bc于e,af⊥cd于f.

1)δabe与δadf相似吗?说明理由。

2)δaef与δabc相似吗?说说你的理由。

例3.如图,在rtδabc中,∠c=90°,ac=4,bc=3.

1)如图(1),四边形defg为abc的内接正方形,求正方形的边长。

2)如图(2),三角形内有并排的两个相等的正方形,它们组成的矩形内接于δabc,求正方形的边长。

3)如图(3),三角形内有并排的三个相等的正方形,它们组成的矩形内接于δabc,求正方形的边长。

4) 如图(4),三角形内有并排的n个相等的正方形,它们组成的矩形内接于δabc,请写出正方形的边长。

.同步测试。

一、选择题(每小题3分,共30分)

2、如图,d、e分别是ab、ac上两点,cd与be相交于点o,下列条件中不能使δabe和δacd相似的是( )

a.∠b=∠c b.∠adc=∠aeb

3、如图所示,d、e分别是δabc的边ab、ac上的点,de∥bc,并且ad∶bd=2,那么sδade∶s四边形dbce=(

a) (b) (c) (d)

4.在矩形abcd中,e、f分别是cd、bc上的点,若∠aef=90°,则一定有( )

a)δade∽δaef (b)δecf∽δaef (c)δade∽δecf (d)δaef∽δabf

第2题图第3题图第4题图。

6、如图,在大小为4×4的正方形网格中,是相似三角形的是( )

a.①和② b.②和③ c.①和③ d.②和④

7、如图是圆桌正上方的灯泡o发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图。已知桌面的直径为1.2m,桌面距离地面1m,若灯泡o距离地面3m,则地面上阴影部分的面积为( )

a.0.36πm2 b.0.81πm2 c.2πm2 d.3.24πm2

8、如图,直线l1∥l2,af∶fb=2∶3,bc∶cd=2∶1,则ae∶ec是( )

a.5∶2 b.4∶1 c.2∶1 d.3∶2

9、如图,三个正六边形全等,其中成位似图形关系的有( )

a.4对 b.1对 c.2对 d.3对。

二、填空题(每小题4分,共20分)

11、两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm2,那么较小的多边形的面积是 cm2.

12、如图,de与bc不平行,当= 时,δabc与δade相似。

13、如图,ad=df=fb,de∥fg∥bc,则sⅰ∶sⅱ∶s

14、如图,正方形abcd的边长为2,ae=eb,mn=1,线段mn的两端在cb、cd上滑动,当cm= 时,δaed与n,m,c为顶点的三角形相似。

15、如图,在直角坐标系中有两点a(4,0)、b(0,2),如果点c在x轴上(c与a不重合),当点c的坐标为或时,使得由点b、o、c组成的三角形与δaob相似(至少写出两个满足条件的点的坐标).

三、解答题(每小题8分,共40分)

16、如图,δabc中,bc=a.

1)若ad1=ab,ae1=ac,则d1e1= ;2)若d1d2=d1b,e1e2=e1c,则d2e2= ;

3)若d2d3=d2b,e2e3=e2c,则d3e34)若dn-1dn=dn-1b,en-1en=en-1c,则dnen= .

17、已知:如图,δabc中,∠b=∠c=30°.请你设计三种不同的分法,将δabc分割成四个三角形,使得其中两个是全等三角形,而另外两个是相似三角形但不全等的直角三角形。

请画出分割线段,标出能够说明分法的所得三角形的顶点和内角度数或记号,并在各种分法的空格线上填空。(画图工具不限,不要求写出画法,不要求说明理由).

分法一:分割后所得的四个三角形中rtδ ∽rtδ .

分法二:分割后所得的四个三角形中rtδ ∽rtδ .

分法三:分割后所得的四个三角形中rtδ ∽rtδ .

19、如图,δabc中,bd是角平分线,过d作de∥ab交bc于点e,ab=5cm,be=3cm,求ec的长。

20、如图,四边形abcd、cdef、efgh都是正方形。

(1)⊿acf与⊿acg相似吗?说说你的理由。

2)求∠1+∠2的度数。

五、(本题10分)

21、在δabc中,ab=4

如图(1)所示,de∥bc,de把δabc分成面积相等的两部分,即sⅰ=sⅱ,求ad的长。

如图(2)所示,de∥fg∥bc,de、fg把δabc分成面积相等的三部分,即sⅰ=sⅱ=sⅲ,求ad的长。

如图(3)所示,de∥fg∥hk∥…∥bc,de、fg、hk、…把δabc分成面积相等的n部分,sⅰ=sⅱ=sⅲ=…请直接写出ad的长。

分法一:分割后所得的四个三角形中rtδ ∽rtδ .

分法二:分割后所得的四个三角形中rtδ ∽rtδ .

分法三:分割后所得的四个三角形中rtδ ∽rtδ .

19、如图,δabc中,bd是角平分线,过d作de∥ab交bc于点e,ab=5cm,be=3cm,求ec的长。

20、如图,四边形abcd、cdef、efgh都是正方形。

(1)⊿acf与⊿acg相似吗?说说你的理由。

2)求∠1+∠2的度数。

五、(本题10分)

21、在δabc中,ab=4

如图(1)所示,de∥bc,de把δabc分成面积相等的两部分,即sⅰ=sⅱ,求ad的长。

如图(2)所示,de∥fg∥bc,de、fg把δabc分成面积相等的三部分,即sⅰ=sⅱ=sⅲ,求ad的长。

如图(3)所示,de∥fg∥hk∥…∥bc,de、fg、hk、…把δabc分成面积相等的n部分,sⅰ=sⅱ=sⅲ=…请直接写出ad的长。

北师大版八年级数学下册第四单元相似图形单元测试题

第四章相似图形测试题。梳理知识。1.三角形相似的条件 1两三角形相似。2两三角形相似。3两三角形相似。2.如何寻找和发现相似三角形两个三角形相似,一般说来必须具备下列六种图形之一 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决。3.相似三角...

北师大版八年级数学下册第四单元相似图形复习 1

第四章 相似图形 复习。梳理知识。一 线段的比及比例线段。1.线段的比 如果选用同一个长度单位量得两条线段ab cd的长度分别是m n,那么就说这两条线段的比ab cd 或写成其中,线段ab cd分别叫做这两个线段比的前项和后项。2.比例尺 图上距离 实际距离 比例尺。练一练 在比例尺1 600 0...

北师大版八年级数学下册第四单元相似图形单元测试题

第四章相似图形测试题。梳理知识。1.三角形相似的条件。1两三角形相似。2两三角形相似。3两三角形相似。2.如何寻找和发现相似三角形。两个三角形相似,一般说来必须具备下列六种图形之一 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决。3.相似三...