小学数学奥数基础教程 四年级

发布 2023-02-02 00:05:28 阅读 2177

本教程共30讲。

盈亏问题与比较法(一)

人们在分东西的时候,经常会遇到剩余(盈)或不足(亏),根据分东西过程中的盈或亏所编成的应用题叫做盈亏问题。

例1 小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。问:有多少个小朋友分多少粒糖?

分析:由题目条件可以知道,小朋友的人数与糖的粒数是不变的。比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。

相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒)。每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为。

4×15+9=69(粒)。

解:(9+6)÷(5-4)=15(人),4×15+9=69(粒)。

答:有15个小朋友,分69粒糖。

例2 小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。问:有多少个小朋友?多少粒糖果?

分析:本题与例1基本相同,例1中两次分配数之差是5-4=1(粒),本题中两次分配数之差是5-3=2(粒)。例1中,两种分配方案的盈数与亏数之和为9+6=15(粒),本题中,两种分配方案的盈数与亏数之和为2+6=8(粒)。

仿照例1的解法即可。

解:(6+2)÷(4——2)=4(人),3×4+2=14(粒)。

答:有4个小朋友,14粒糖果。

由例1、例2看出,所谓盈亏问题,就是把一定数量的东西分给一定数量的人,由两种分配方案产生不同的盈亏数,反过来求出分配的总人数与被分配东西的总数量。解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),由此得到求解盈亏问题的公式:

分配总人数=盈亏总额÷两次分配数之差。

需要注意的是,两种分配方案的结果不一定总是一“盈”一“亏”,也会出现两“盈”、两“亏”、一“不盈不亏”一“盈”或“亏”等情况。

例3 小朋友分糖果,每人分10粒,正好分完;若每人分16粒,则有3个小朋友分不到糖果。问:有多少粒糖果?

分析与解:第一种方案是不盈不亏,第二种方案是亏16×3=48(粒),所以盈亏总额是0+48=48(粒),而两次分配数之差是16——10=6(粒)。由盈亏问题的公式得。

有小朋友(0+16×3)÷(16——10)=8(人),有糖10×8=80(粒)。

下面的几道例题是购物中的盈亏问题。

例4 一批小朋友去买东西,若每人出10元则多8元;若每人出7元则少4元。问:有多少个小朋友?东西的**是多少?

分析与解:两种购物方案的盈亏总额是8+4=12(元),两次分配数之差是10——7=3(元)。由公式得到。

小朋友的人数(8+4)÷(10——7)=4(人),东西的**是10×4——8=32(元)。

例5 顾老师到新华书店去买书,若买5本则多3元;若买7本则少1.8元。这本书的单价是多少?顾老师共带了多少元钱?

分析与解:买5本多3元,买7本少1.8元。

盈亏总额为3+1.8=4.8(元),这4.

8元刚好可以买7——5=2(本)书,因此每本书4.8÷2=2.4(元),顾老师共带钱。

2.4×5+3=15(元)。

例6 王老师去买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还差30元。问:儿童小提琴多少钱一把?王老师带了多少钱?

分析:本题在购物的两个方案中,每一个方案都出现钱不足的情况,买7把小提琴差110元,买5把小提琴差30元。从买7把变成买5把,少买了7——5=2(把)提琴,而钱的差额减少了110——30=80(元),即80元钱可以买2把小提琴,可见小提琴的单价为每把40元钱。

解:(110——30)÷(7——5)=40(元),40×7——110=170(元)。

答:小提琴40元一把,王老师带了170元钱。

练习141.小朋友分糖果,每人3粒,余30粒;每人5粒,少4粒。问:有多少个小朋友?多少粒糖?

2.一个汽车队运输一批货物,如果每辆汽车运3500千克,那么货物还剩下5000千克;如果每辆汽车运4000千克,那么货物还剩下500千克。问:这个汽车队有多少辆汽车?

要运的货物有多少千克?

3.学校买来一批图书。若每人发9本,则少25本;若每人发6本,则少7本。问:有多少个学生?买了多少本图书?

4.参加美术活动小组的同学,分配若干支彩色笔。如果每人分4支,那么多12支;如果每人分8支,那么恰有1人没分到笔。问:有多少同学?多少支彩色笔?

5.红星小学去春游。如果每辆车坐60人,那么有15人上不了车;如果每辆车多坐5人,那么恰好多出一辆车。问:有多少辆车?多少个学生?

6.某数的8倍减去153,比其5倍多66,求这个数。

7.某厂运来一批煤,如果每天烧1500千克,那么比原计划提前一天烧完;如果每天烧1000千克,那么将比原计划多用一天。现在要求按原计划烧完,那么每天应烧煤多少千克?

8.同学们为学校搬砖,每人搬18块,还余2块;每人搬20块,就有一位同学没砖可搬。问:共有砖多少块?

答案与提示练习。

1.17人;81粒糖。2.9辆;36500千克。

3.6人;29本。4.5人;32支笔。

5.16辆车;975人。6.73。

7.1200千克。

提示:这批煤按原计划可以烧。

(1500+1000)÷(1500-1000)=5(天)。

8.200块。

小学数学奥数基础教程四年级

本教程共30讲。鸡兔同笼问题与假设法。鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问 小梅家的鸡与兔各有多少只?分析 假设16只都是鸡,那么就应该有2 16 ...

小学数学奥数基础教程 四年级

本教程共30讲。弃九法。从第4讲知道,如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除 如果一个数各个数位上的数字之和被9除余数是几,那么这个数被9除的余数也一定是几。利用这个性质可以迅速地判断一个数能否被9整除或者求出被9除的余数是几。例如,3645732这个数,各个数位上的数字之...

小学数学奥数基础教程 四年级

小学数学奥数基础教程 四年级 第05讲。本教程共30讲。弃九法。从第4讲知道,如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除 如果一个数各个数位上的数字之和被9除余数是几,那么这个数被9除的余数也一定是几。利用这个性质可以迅速地判断一个数能否被9整除或者求出被9除的余数是几。例如,...