光学与安全工程

发布 2022-05-24 07:37:28 阅读 6068

磁学、光学、振动波。

在安全工程专业的应用。

一、磁学。磁学,是现代物理学的一个重要分支。现代磁学是研究磁,磁场,磁材料,磁效应,磁现象及其实际应用的一门学科。

磁学和电学有着直接的联系。经典磁学认为如同电荷一样,自然界中存在着独立的磁荷。相同的磁荷互相排斥,不同的磁荷互相吸引。

而现代磁学则认为环形电流元是磁极产生的根本原因,相同的磁极互相排斥,不同的磁极互相吸引。独立的磁荷是不存在的。由于电子围绕原子核的运动,所有的物质都具有某种特别的磁学效应。

但是在自然界,铁,镍,钴等材料表现了很强的磁特性,所以磁学又被称为铁磁学。

1、经典磁学。

法国物理学家库仑于2023年确立了静电荷间相互作用力的规律——库仑定律之后,又对磁极进行了类似的实验后证明:同样的定律也适用于磁极之间的相互作用。这就是经典磁学理论。

在磁场的经典理论中,一个最基本的公式就是一个单独的没有任何尺寸大小的磁极在磁场中所受到的作用力的公式。但是和电场理论中的电荷的概念不一样,电场中的独立的正负电荷可以单独存在,而单独的正负磁极实际上是不存在的,磁极从来都是成对出现的。正负磁极一般称为磁北极和磁南极。

为了避免这种理论上的困难,经典磁场理论认为一个非常细长的磁铁中的一个磁极则可以被近似地看着是一个单独的磁极。根据这样一个假设,从而可以得出一个单独的磁极在磁场中所受到的力和磁极本身的强度成正比,和磁极所在地点的磁场强度成正比的关系式。

2、现代磁学。

电磁理论。经典磁场理论中,绝大多数的公式都是正确的,并且也一直沿用至今,但是在整个理论中最根本的问题是它采用了一个实际上并不存在的所谓单独的磁极的假设。这就是经典磁学理论中的所谓库伦方法的一个致命弱点。

丹麦物理学家奥斯特在2023年发现,一条通过电流的导线会使其近处静悬着的磁针偏转,显示出电流在其周围的空间产生了磁场,这是证明电和磁现象密切结合的第一个实验结果。紧接着,法国物理学家安培等的实验和理论分析,阐明了载着电流的线圈所产生的磁场,以及电流线圈间相互作用着的磁力。通过应用电流元产生磁场的方法,磁场理论中的很多概念和电场理论中的很多概念十分相近。

安培同时提出,铁之所以显现强磁性是因为组成铁块的分子内存在着永恒的电流环,这种电流没有像导体中电流所受到的那种阻力,并且电流环可因外来磁场的作用而自由地改变方向。这种电流在后来的文献中被称为“安培电流”或分子电流。

洛伦兹公式。

在电场和磁场的理论中,洛伦兹公式具有非常重要的意义,这个公式给出了一个运动中的电荷在电场和磁场中所受到的力的大小和方向。磁场和电场有很多的相似点,但是它们有着根本的差别。

现代磁学理论。

现代磁学理论中的主要概念包括:磁场强度,磁感应强度,磁通量,磁化强度,磁矩,磁化率系数,磁势,磁阻,磁导等等。

3、电磁学。

电磁学是研究电和磁的相互作用现象,及其规律和应用的物理学分支学科。根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。

电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。

二、光学。光学是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。

光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。波动光学是光学中非常重要的组成部分,内容包括光的干涉、光的衍射、光的偏振等,无论理论还是应用都在物理学中占有重要地位。粒子在光场或其他交变电场的作用下,产生振动的偶极子,发出次波。

用这样模型来说明光的吸收、色散、散射、磁光、电光等现象,甚至光的发射也是一般波动光学的内容。电磁波理论应用到晶体称晶体光学。光波波长约为3.

9-7.6×10 cm ,一般的障碍物或孔隙都远大于此,因而通常都显示出光的直线传播现象。这一时期,人们还发现了一些与光的波动性有关的光学现象,例如格里马尔迪首先发现光遇障碍物时将偏离直线传播,他把此现象起名为“衍射”。

胡克和r.玻意耳分别观察到现称之为牛顿环的干涉现象。这些发现成为波动光学发展史的起点。

光的衍射。光的衍射是光的波动性的重要标志之一,光在传播过程中所呈现的衍射现象,进一步揭示了光的波动本性。同时衍射也是讨论现代光学问题的基础。

波在传播中表现出衍射现象,既不沿直线传播而向各方向绕射的现象。窗户内外的人,虽然彼此不相见,都能听到对方的说话声,这说明声波(机械波)能饶过窗户边缘传播。水波也能绕过水面上的障碍物传播。

无线电波能绕过山的障碍,使山区也能接受到电台的广播。这些现象表明,当波遇到障碍物时,它将偏离直线传播,这种现象叫做波的衍射。

光的传播。光的传播看来是沿直线进行的,遇到不透明的障碍物时,会投射出清晰的影子,粗看起来,衍射和直线传播似乎是彼此矛盾的现象。

光的干涉。光的干涉现象是几束光相互叠加的结果。实际上即使是单独的一束光投射在屏上,经过精密的观察,也有明暗条纹花样出现。

例如把杨氏干涉实验装置中光阑上两个小孔之一遮蔽,使点光源发出的光通过单孔照射到屏上,仔细观察时,可看到屏上的明亮区域比根据光的直线传播所估计的要大得多,而且还出现明暗不均匀分布的照度。光通过狭缝,甚至经过任何物体的边缘,在不同程度上都有类似的情况。把一条金属细线(作为对光的障碍物)放在屏的前面,在影的**应该是最暗的地方,实际观察到的却是亮的,这种光线绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强不均匀的分布的现象叫做光的衍射。

光的衍射现象的发现,与光的直线传播现象表现上是矛盾的,如果不能以波动观点对这两点作统一的解释,就难以确立光的波动性概念。事实上,机械波也有直线传播的现象。超声波就具有明显的方向性。

普通声波遇到巨大的障碍物时,也会投射清楚的影子,例如在高大墙壁后面就听不到前面的的声响。在海港防波堤里面,巨大的海浪也不能到达。微波一般也同样是以直线传播的。

衍射现象的出现与否,主要决定于障碍物线度和波长大小的对比。只有在障碍物线度和波长可以比拟时,衍射现象才明显的表现出来。声波的波长可达几十米,无线电波的波长可达几百米,它们遇到的障碍物通常总远小于波长,因而在传播途中可以绕过这些障碍物,到达不同的角度。

一旦遇到巨大的障碍物时,直线传播才比较明显。超声波的波长数量级小的只有几毫米,微波波长的数量级也与此类似,通常遇到的障碍物都远较此为大,因而它们一般都可以看作是直线传播。

光波波长。光波波长约为3.9-7.

6×10 cm ,一般的障碍物或孔隙都远大于此,因而通常都显示出光的直线传播现象。一旦遇到与波长差不多数量级的障碍物或孔隙时,衍射现象就变的显著起来了。

与几何光学关系。

与可见光传播相关联的电磁场,其特点是振动非常之快(频率数量级为10 秒),或者说是波长非常短(数量级为10 -15厘米)。因此可以预期,在这种情况下,完全忽略波长的有限大小,可以得到光传播定律的良好一级近似。人们发现,对很多光学问题而言,这样处理是完全适合的。

在光学中,可以忽略波长,即相当于λ0→0 极限情况的这一分支,通常称为几何光学,因为在这种近似处理下,光学定律可以用几何学的语言来表述。 衍射现象的一个最简单的典型例子-单狭缝的夫琅和费衍射。它包含着衍射现象的许多主要特征。

来自光源s的光(例如激光)经望远镜系统构成的扩束器l1扩束直接投射到一狭缝上。在狭缝后面放置一透镜l2,那么在透镜l2的焦平面上放置的屏幕f'f上将产生明暗交替的衍射花样。其特点是在**具有一特别明亮的亮条纹,两侧排列着一些强度较小的亮条纹。

相邻的亮条纹之间有一暗条纹。如以相邻暗条纹之间的间隔作为亮条纹的宽度,则两侧亮条纹为等宽的,而**亮条纹的宽度为其它条纹的两倍。人们将亮条纹到透镜中心所张的角度称为角宽度。

**亮条纹和其它亮条纹的角宽度不相等。**亮条纹的角度等于 2λ/b(b 为缝宽) ,即等于其它亮条纹角宽度的二倍。那么**亮纹的半角宽度 δθb,正好等于其它亮纹的角宽度。

由于**亮斑集中了大部分光能,所以它的半角宽度的大小可作为衍射效应强弱的量度。式子δθ=b, 告诉人们,对给定的波长,δθ与缝宽b成反比,即在波前上对光束限制越大,衍射场越弥散,衍射斑铺开的越宽;反之当缝宽很大,光束几乎自由传播时,δθ0,这表明衍射场基本上集中在沿直线传播的方向上,在透镜焦平面上衍射斑收缩为几何光学象点。式子δθ=b还告诉人们,在保持缝宽不变的条件下,δθ与λ成正比,波长越长,衍射效应越显著;波长越短,衍射效应越可忽略。

所以说几何光学是b>>λ时的一种近似,或说λ→0的近似。除了直线传播定律之外,作为几何光学基础的另外两条定律-反射定律和折射定律,也都只在入很小的条件下才近似成立,所以几何光学原理的适用范围是有限度的,在必要的时候需要用更严格的波动理论来代替它。不过由于几何光学处理问题的方法要简单的多,并且它对各种光学仪器中遇到的许多实际问题已足够精确,所以几何光学并不失为各种光学仪器的重要理论基础。

三、机械波。

机械振动在介质中的传播称为机械波。机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。

常见的机械波有:水波、声波、**波。

形成条件。波源:波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。

波源即是机械波形成的必要条件,也是电磁波形成的必要条件。波源可以认为是第一个开始振动的质点,波源开始振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。

介质:广义的介质可以是包含一种物质的另一种物质。在机械波中,介质特指机械波借以传播的物质。

仅有波源而没有介质时,机械波不会产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。

传播方式与特点。

质点的运动:机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质点运动是沿一水平直线进行的。例如:

人的声带不会随着声波的传播而离开口腔。简谐振动做等幅震动,理想状态下可看作做能量守恒的运动。阻尼振动为能量逐渐损失的运动。

为了说明机械波在传播时质点运动的特点,现已绳波为例进行介绍,其他形式的机械波同理。

绳波:绳波是一种简单的横波,在日常生活中,我们拿起一根绳子的一端进行一次抖动,就可以看见一个波形在绳子上传播,如果连续不断地进行周期性上下抖动,就形成了绳波。把绳分成许多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。

第一个质点在外力作用下振动后,就会带动第二个质点振动,只是质点二的振动比前者落后。这样,前一个质点的振动带动后一个质点的振动,依次带动下去,振动也就发生区域向远处的传播,从而形成了绳波。如果在绳子上任取一点系上红布条,我们还可以发现,红布条只是在上下振动,并没有随波前进。

由此,我们可以发现,介质中的每个质点,在波传播时,都只做简谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形式的传播,质点本身不会沿着波的传播方向移动。对质点运动方向的判定有很多方法,比如对比前一个质点的运动;还可以用“上坡下,下坡上”进行判定,即沿着波的传播方向,向上远离平衡位置的质点向下运动,向下远离平衡位置的质点向上运动。

安全工程专业油气安全工程HSE与事故案例案例分析

安全工程专业。油气安全工程hse 与事故案例案例分析。油气安全工程hse案例分析总结。经过半个学期的时间,我们有幸聆听了7位外聘专家关于石油石化领域的讲座。每位老师的授课内容都有其独特之处,用各自领域的知识技能让我们理解和学会了许多石油石化行业的知识。通过各位老师对一些典型的hse案例进行分析 讲解...

安全工程导论 安全科学与工程导论 实验大纲

安全工程导论 课程实验教学大纲。课程中文名称 安全工程导论。课程英文名称 introduction to safety engineering 课程性质 专业必修课。课程属性 专业平台课程。教材及实验指导书名称 安全工程自编 安全工程导论实验指导书 学时学分 总学时 18 实验学时 2 实验学分。应...

校舍安全工程

甜水沟小学校舍安全工程改造方案。我校根据 甘肃省校安办关于报送校舍安全工程校舍加固改造方案的通知 文件要求,结合我校实际,经学校行政会议决定,特制定如下校舍加固改造方案。一 校舍安全工程改造领导小组 组长 赵光尧 副组长 王卫东 成员 赵小彦苟红娟。二 学校校舍安全现状分析 号建筑物原印刷厂总面积为...