六年级数学应用题有解析

发布 2020-08-23 02:02:28 阅读 5628

小升初数学:应用题综合训练16

小学数学应用题综合训练(16)

151.甲、乙两个书架,共有书3000册,甲的册数的2/5比乙的册数的1/4多420本,求两个书架各有书多少册?

解:如果给乙的1/4加上420册,即给乙加上420*4=1680册,乙的1/4就与甲的2/5同样多。这时,甲、乙的册数比为1/4:2/5=5:8。

所以,甲书架有书:(3000+1680)*5/(5+8)=1800册;乙书架有书:3000-1800=1200册。

152.姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,用24小时打印完,问姐姐打印了多少小时?

解法一:另外的1-2/5=3/5如果弟弟做,需要的时间就相当于姐姐的3/5÷3/8=8/5,所以姐姐单独打印完需要24÷(2/5+8/5)=12小时,所以姐姐打了12×2/5=4.8小时。

解法二:姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5需要的时间相当于弟弟完成同样任务所需总时间的2/5×3/8=3/20,接着由弟弟单独打印,需时为总时间的3/5,两比为1/4,共计用24小时。

弟弟打剩下的3/5用时24×4/(1+4)=96/5小时,完成全部任务用96÷5÷3/5=32小时。姐姐单独打完用时是32×3/8=12小时。所以姐姐用了12×2/5=4.

8小时。

153.有甲、乙两个水管向水池注水,先开甲管,开放时间是单开乙管注满水池所需时间的1/3.然后开放乙管,开放的时间是单开甲管注满水池所需时间的1/3.

这样注满水池的13/18.如果甲、乙两管同时开放,注满水池需3+3/5小时,那么单开甲管或单开乙管注满水池,各需要多少小时?

解:用初中的方法解答一下。设甲管开放时间是x小时,乙管开放时间是y小时。

有x/y×1/3+y/x×1/3=13/18,解得y/x=2/3

因为1/y+1/x=5/18,所以,x=9,y=6

两地相距105千米,甲、乙两人骑自行车分别从两地同时相向而行,出发后经1+3/4小时相遇,接着两人继续前进,在他们相遇3分钟后,一直以每小时40千米速度行驶的甲在途中与迎面而来的丙相遇,丙在与甲相遇后继续前进,在c地赶上乙。如果开始时甲的速度比原速每小时慢20千米,而乙的速度比原速每小时快2千米。那么甲乙就会在c地相遇。

求丙的骑车速度?

解:甲乙的速度和每小时105÷7/4=60千米。

乙的速度是每小时行60-40=20千米。

后来甲的速度是每小时40-20=20千米,乙的速度是每小时20+2=22千米。

c地在距离a地的105÷(20+22)×20=50千米。

原来相遇的地点距离a地105÷60×40=70千米。

3分钟后甲乙相距60×3/60=3千米。

乙行了20×3/60=1千米,距离c地70-50+1=19千米。

甲行了40×3/60=2千米,丙距离c地70-50+2=22千米。

乙丙的速度比是19:22,所以丙的速度是每小时20÷19×22=440/19千米。

155.一件工作由a,b两道工序,上午在a工序上工作的人数是在b工序上工作人数的1/6.为提高工作效率,下午从b工序上调1人到a工序上,这时a工序上的人数是b工序上人数的1/5,a,b两个工序上共有多少人在工作?

解:上午在a工序的人数是总人数的1÷(1+6)=1/7

下午在a工序上的人数是总人数的1÷(1+5)=1/6

所以共有1÷(1/6-1/7)=42人。

156.一座下底面是边长为10米的正方形石台,它的一个顶点a有一个虫子巢穴,虫甲每分钟爬6厘米,虫乙每分钟爬10厘米,甲沿正方形的边由a-b-c-d-a不停地爬行,甲先爬2厘米后,乙沿甲爬行过的路线追赶甲,当乙遇到甲后,乙就立即沿原路返回巢穴,然后乙再沿甲爬行的路线追赶甲,..在甲爬行的一圈内,乙最后一次追上甲时,乙爬行了多长时间?

解:谈谈我对这个题目的详细解答,与大家共享。

10米的正方形的周长是10×4×100=4000厘米。

每分钟乙虫比甲虫多行10-6=4厘米。

每次乙从起点出发追及,乙行的路程不能超过4000厘米。

所以每次追及的时间不能超过4000÷10=400分钟。

所以相差的距离不能超过400×4=1600厘米。

设每一次追的距离为1份,那么下一次追及的距离是1+6×[1÷(10-6)]×2=4份。

每次从起点出发追及的距离依次是、…

因此,最后一次追及相差的距离是512厘米。

当乙追上甲时,甲共行了512÷4×10=1280厘米。

所以,从乙出发到最后一次追上甲,甲共行了1280-2=1278厘米。

甲行这段路程的时间就是乙爬行的所有时间。

所以是1278÷6=213分钟。

157.有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1/10,第三只猴子分了12个桃子和这时剩下桃子的1/10...依次类推。

最后发现这堆桃子正好分完,且每只猴子分得的桃子同样多。那么这群猴子有多少只?

方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子

剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。

所以a+4=b+8,即b=a-4个。那么就有9a=10(a-4)+8。

解得a=32。所以桃子有32×10+4=324个。

每只猴子分得32+4=36个,所以猴子有324÷36=9只。

明月清风老师的解法。

第一只猴子分得的那1/10比第二只猴子的那1/10多8-4=4个。

第一只猴子分得的那1/10对应的单位1比第二只猴子分得的1/10对应的单位1多4÷1/10=40个。

那么第一只猴子分得的那1/10是40-8=32个。

所以桃子总数是32×10+4=324个。

每只猴子吃32+4=36个,那么有324÷36=9只猴子。

158.有甲、乙两项工作,张师傅单独完成甲工作要9天,单独完成乙工作要12天。王师傅单独完成甲工作要3天,单独完成乙工作要15天。如果两人合作完成这两项工作,最少需要多少天?

解:分配任务,王师傅完成甲工作的时间少,先做3天甲工作,就完成了。

张师傅完成乙工作的时间少,先做3天乙工作,剩下1-3/12=3/4。

还需要3/4÷(1/12+1/15)=5天。所以共有3+5=8天。

159.某服装厂生产一种服装,每件的成本是144元,售价是200元。一位服装经销商订购了120件这种服装,并提出:

如果每件的销售每降低2元,我就多订购6件。按经销商的要求,这个服装厂售出多少件时可以获得最大的利润,这个最大利润是多少元?

解:原来的利润是200-144=56元。

由于56是2的倍数,所以把56看作56÷2=28份,

由于120是6的倍数,所以120看作120÷6=20份。

所以(20+28)÷2=24份的时候利润最大。

即最大利润是24×2×24×6=6912元。售出的件数是24×6=144件。

160.甲、乙两车从a,b两站同时相向而行,已知甲车的速度是乙车的1.4倍,当甲车到达途中c站时,乙车还要再行4小时48分才能到达c站,那么甲车到达c站后还要再行多少小时与乙车相遇?

解:相距的路程是乙行4+48/60=4.8小时的路程。

所以,相遇时间是4.8÷(1+1.4)=2小时。

六年级数学应用题有解析

小升初数学 应用题综合训练09 81.有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9 如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?解 根据新课标教材,0是最小的自然数。由于去掉最小数后,算术平均数是11,...

六年级数学应用题有解析

小升初数学 应用题综合训练15 141.甲 乙两人同时从a地出发到b地,经过3小时,甲先到b地,乙还要1小时到达b地,此时甲 乙共行了35千米。求ab两地的路程。解 甲行3小时的路程,乙行3 1 4小时,说明甲乙的速度比是4 3。ab两地的距离就是甲行的。所以是35 4 3 4 20千米。142.某...

六年级奥数应用题有解析

学习必备欢迎 应用题综合训练 211.快车与慢车分别从甲 乙两地同时开出,相向而行,经过5小时相遇。已知慢车从乙地到甲地用12.5小时,慢车到甲地停留半小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇共需多少时间?解 快车每小时行1 5 1 12.5 3 25。当慢车到达甲地...