小学数学奥数基础教程(六年级) -第20讲。
本教程共30讲。
数值代入法。
有一些看起来缺少条件的题目,按常规解法似乎无法求解,但是仔细分析发现,题中只涉及几个存在着倍数或比例关系的数量,而题目中缺少的条件,对于答案并无影响,这时就可以采用“数值代入法”,即对于题目中“缺少”的条件,假设一个数代入进去(当然假设的这个数应尽量方便计算),然后求出解答。
例1 足球赛门票15元一张,降价后观众增加一倍,收入增加五分之一。问:一张门票降价多少元?
分析与解:初看似乎缺少观众人数这个条件,实际上观众人数与答案无关。因为降价前后观众人数存在倍数关系,收入也存在比例关系,所以可以使用数值代入法。
我们随意假设观众人数,为了方便,假设原来只有一个观众。
则降价后每张票价为9元,每张票降价15-9=6(元)。
例2 某幼儿园中班的小朋友平均身高115厘米,其中男孩人数比女孩人。
分析与解:题中没有男、女孩的人数,我们可以假设女孩有5人,则男孩有6人。这时总身高为:
115×(5+6)=1265(厘米)。
例3 甲、乙分别由a,b两地同时出发,甲、乙两人步行的速度比是7∶5。如果相向而行,那么0.5时后相遇;如果按从a到b的方向同向而行,那么甲追上乙需要多少小时?
分析与解:设甲、乙的速度分别为7千米/时和5千米/时,则a,b两地相距(7+5)×0.5=6(千米)。
同向而行,甲追上乙需要65÷(7—5)=3(时)。
需要说明的是,a,b两地的距离并不一定是6千米,6千米是根据假设甲、乙的速度分别为7千米/时和5千米/时而计算出来的。假设不同的速度,会得出不同的距离,因为假设的速度与计算出的距离成正比,所求的时间是“距离÷速度差”,所以不影响结论的正确性。
例4五年级三个班的人数相等,一班的男生人数与二班女生人数相等,三几?
分析:由“三个班人数相等,一班男生数与二班女生数相等”知,一班女生数等于二班男生数,因此。
一、二班男生人数的和。
以及。一、二班女生人数的和给三班的男生人数设一个具体数值,那么就可依次求出全部男生人数以及。
一、二班男生人数的和(即每班人数),问题就迎刃而解了。
个班。在上面的例题中,将假设的数值代入解题过程,便得到正确答案。对于这类题目,假设不同的数值,都会得到相同的答案。
还有一类题目,也可以使用数值代入法,但因为题中涉及的量不仅仅是倍数关系,所以假设的数不同,结果就不同,需要通过比较所得结果与已知结果来修正假设的数,从而得出正确解答。
例5 用绳子测量井深,把绳三折来量,井外余4米;把绳四折来量,井外余1米。求井深和绳长。
分析与解:由题意可知,三折后的绳子比四折后的绳子多4-1=3(米)。假设这根绳长12米,那么三折后的绳长比四折后的绳长长12÷3-12÷
井深=36÷4-1=8(米)。
例6 甲车从a地到b地需行6时,乙车从b地到a地需行10时。现在甲、乙两车分别从a,b两地同时出发,相向而行,相遇时甲车比乙车多行90千米,求a,b两地的距离。
分析与解:假设a,b相距30千米(既是6的倍数又是10的倍数),那么。
甲车的速度为 30÷6=5(千米/时),乙车的速度为 30÷10=3(千米/时),两车相遇需 30÷(5+3)=3.75(时),相遇时甲车比乙车多行。
(5-3)×3.75=2×3.75=7.5(千米)。
题目条件“甲车比乙车多行90千米”是7.5千米的90÷7.5= 12(倍),说明a,b两地距离是假设的30千米的12倍,即。
30×12=360(千米)。
练习201.上山的速度是3千米/时,下山的速度是6千米/时。求上山后又下山的平均速度。
高为132厘米。问:女生平均身高是多少厘米?
3.一堆糖果,分给大、小幼儿班,每人可得6块;只分给大班,每人可得10块。若只分给小班,则每人可得几块?
那么不及格同学的平均分是多少?
能当选?6.一个数除以5与除以3的商相差4,余数都是1,求这个数。
7.甲、乙两人搬一堆砖,甲单独搬完需40分钟,乙单独搬完需60分钟。现在两人同时开始搬,搬完时甲比乙多搬72块砖。这堆砖共有多少块?
答案与提示练习20
1.4千米/时。提示:设山路长6千米。
2.128厘米。提示:设有2个男生3个女生。
3.15块。提示:设有30块糖果。
4.40分。提示:设有4人参加考试。
提示:设这个数减1后是15。15÷3-15÷5=2,实际的4是2的2倍,所以这个数是15×2+1=31。
7.360块。
解:设这堆砖有120块。由此推知每分钟甲搬120÷40=3(块),乙搬120÷60=2(块)。两人合搬需120÷(3+2)=24(分),甲比乙多搬(3-2)×24=24(块)。
实际的72块是24块的72÷24=3(倍),所以共有砖120×3=360(块)。
小学数学奥数基础教程 六年级
小学数学奥数基础教程 六年级 第29讲。本教程共30讲。运筹学初步 三 本讲主要讲统筹安排问题 排队问题 最短路线问题 场地设置问题等。这些都是人们日常生活 工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。当然,限于现有的知识水平,我们仅仅是初步探索一下。1.统...
小学数学奥数基础教程 六年级
本教程共30讲。圆柱与圆锥。这一讲学习与圆柱体和圆锥体有关的体积 表面积等问题。例1 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解 本题的关键是要找出容器上半部分的体积与下半部分的关系。这表明容器可以装8份5升水,已经装了1份,还能装水5 8 1...
小学数学奥数基础教程 六年级
精品文档。小学数学奥数基础教程 六年级 第09讲。本教程共30讲。百分数。百分数有两种不同的定义。1 分母是100的分数叫做百分数。这种定义着眼于形式,把百分数作为分数的一种特殊形式。2 表示一个数 比较数 是另一个数 标准数 的百分之几的数叫做百分数。这种定义着眼于应用,用来表示两个数的比。所以百...