小学六年级数学10大难题详解

发布 2020-07-12 13:28:28 阅读 5066

一、【最小的一位数是0还是1】

这个问题在很长一段时间存在争论。先来看看“关于几位数”的叙述:“通常在自然数里,含有几个数位的数,叫做几位数。

例如“2”是含有一个数位的数,叫做一位数;“30”是含有两个数位的数,叫做两位数;“405”是含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。

再来听听专家的说明:在自然数的理论中,对“几位数”是这样定义的,“只用一个有效数字表示的数,叫做一位数;只用两个数字(其中左边第一个数字为有效数字)表示的数,叫做两位数……所以,在一个数中,数字的个数是几(其中最左边第一个数字为有效数字),这个数就叫几位数。

于此,所谓最大的几位数,最小的几位数,通常是在非零自然数的范围研究。所以一位数共有九个,即。0不是最小的一位数。

二、【什么是有效数字、无效数字?】

有效数字是对一个数的近似值的精确程度而提出的。同一个近似数如果在取舍时,保留的有效数字多,就比保留的有效数字少更精确。一般说,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。

这时,从左边第一个非零的数字起,到那一位上的所有数字都叫做这个数的有效数字。如近似数0.00309有三个有效数字;0.

520也有三个有效数字。而0.00309中左边的三个零,0.520中左边的一个零,都叫做无效数字。三、【为什么不写“倍”?】

在学习“求一个数是另一个数的几倍”应用题时,很多小朋友会自然提出这样的疑问,如:“饲养小组养了12只小鸡,3只小鸭,小鸡的只数是小鸭的几倍?”为什么“12÷3=4”的后面不写“倍”呢?

我们首先应该肯定学生的质疑(学生有较强的解题规范意识)。但同时又该对学生说明:在解答应用题时,得数后面一般要写上的是数的单位名称。

如:12只的“只”;8克的“克”。一个数只有带上单位名称,才能准确地表示出一个物体的多少、大小、长短、轻重等等。

但是,“倍”不是单位名称,它表示两个数量之间的一种关系。例如,上面的计算结果“4”,表示12里面有4个3,就是12只小鸡是3只小鸭的4倍。所以,在算式里不写“倍”,以免“倍”与单位名称发生混淆。

四、【“倍”和“倍数”的区别】

在第一学段我们学习了“倍的初步认识”,认识了概念“倍”,而在第二学段,我们又学习到“倍数”这个概念。那么,“倍”和“倍数”这两个词到底是不是一回事呢?这两个词之间有什么区别呢?

“倍”指的是数量关系,它建立在乘除法概念的基础上。例如:男生有10人,女生有30人,因为“10×3=30”或者“30÷10=3”,我们就说,女生人数(30)是男生人数(10)的3倍,也可以说,男生人。

数(10)的3倍等于女生人数(30)。勿宁说,“倍”其实表示的是两个数的商(这个商可以是整数、小数、分数等各种表现形式)。“倍数”指的是数与数之间的联系,它建立在整除概念的基础上。

例如,30能被6整除,30就是6的倍数。可见,“倍数”是不能独立存在的(具有特定的指向性),而且对数的形式有特别的要求(必须为整数)。

同时我们又看到,30也是6的5倍,因为6×5=30,“6×5”表示6的5倍。所以从这个角度来说,“倍”的涵义应宽泛于“倍数”,后者可以视为前者在特定情形下的一种表现。

五、【“时”和“小时”有什么不同?怎样使用“时”和“小时”?】首先应该明确的是,〔小〕时并非国际时间单位。

在2023年***发布的《关于我国统一法定计量单位的命令》中,把秒作为时间的基本单位,把非国际单位制的时间单位天(日)、〔小〕时、分作为辅助单位。(注:〔〕里的字,在不致混淆的情况下,可以省略)。

这样,在我国范围内使用的法定时间单位就有:天(日)、〔小〕时、分、秒。

由此,“时”既可以表示时间,又可以表示时刻。由于“时间”和“时刻”这两个不同的概念容易产生混淆,在实际应用时间单位“时”时,现行教材作了如下处理:

1、当列式计算出时间的长短时,在得数的括号里写上时间的单位“时”。例如:

超市营业时间:21-9=12(时)。(此处可省略“小”字)

2、在用语言表述时间的长短时,为避免“时间”和“时刻”这两个概念产生混淆,则在“时”的前面加上一个“小”字。例如:超市营业时间12小时。

3、在用语言表示时刻时,一律不得出现“小时”字样。例如:公园每天早上7时30分开园(而非7小时30分)。六、【“路程”就是“距离”吗?】

这两个词在许多老师的教学语言中是替代使用的,其实不然。“路程”是指从一个地点到另一个地点所经过路线的长度;而“距离”则指连接两个地点而成的直线段的长度。

可以看到,“路程”所经过的路线可以是曲形线,也可以是直形线,还可能是折形线。一般情况下,两个地点之间的“路程”要大于它们之间的“距离”,只有当两个地点之间的路线为直线时,路程和距离才相等。

七、【最大的分数单位是1/2还是1/1?】

先看看分数单位的含义:把单位“1”平均分成若干份,表示这样一份的数。显然,在分数意义中,关键是“分”,没有“分”,就没有“份”。

因为把单位“1”平均分成的最少份数是2份(如果是1份,也就无所谓“分”),由此得到的分数单位是1/2,所以1/2是最大的分数单位。尽管就广义的分数来说,1/1也可视作分数,但它已不是我们通常意义上认识的与整数对立的那种分数(在平均分的基础上所产生),故此,最大的分数单位应以1/2为宜。

八、【比6多1/2的数应该是“6+1/2”还是“6*(1+1/2)”?要弄清这个问题,先得弄清“6”的性质。显然,此处的“6”其实质是一个“数”,而非一个“量”,求“比6多1/2的数”应属于“求比一个数多几的数”的范畴,问题中的“多几”都是确定的具体数,这里的“几”既可以是整数,也可以是小数或分数。

所以,这里的“1/2”是指在6的基础上“多1/2”这个“1/2”数的本身,而非“6的1/2”。所以,“比6多1/2的数”应该是“6+1/2”。当然,如果题目确定为“比6多它的1/2的数”,那答案则属于后者。

九、【少于90度的角都是锐角吗?】

根据课标教材定义:小于90度的角叫做锐角。答案似乎是肯定的,但由此又产生一个新的问题:

0度的角是什么角,也是锐角吗?事实是,锐角定义有一个隐含的前提,就是小学数学中所讨论的角都是正角。习惯上,我们把射线按逆时针方向旋转而得到的角叫做正角,射线按顺时针方向旋转而得到的角叫做负角,当一条射线没有做任何旋转时,就把它看成零角。

如果将角的概念推广到任意大小的角,就应分为正角、负角、和零角。

由此,严格意义上的锐角定义应是:大于0度而小于90度的角叫做锐角。

十、【足球比赛记分牌上的“3:2”是数学中的“比”吗?】我们至少可以从两个方面来理解它们的差别。

第一,球类比赛中的“3︰2”表示的是比赛双方的得分情况,是“差”比,即表示相差关系,一方得3分,另一方得2分,双方相差1分;数学中的“3︰2”表示的是“3÷2”,是“倍”比,商为1.5。有鉴于此,球类比赛中的“比”(其实是比分),其后数可以为0的,而数学中的“比”,其后数(相当于除数)是不可以为0的。

“2︰1”;同样的“4︰2”放在球类比赛中,却不可以化简,如果化简就不能反映双方在比赛中的实际得分了。

六年级数学难题

1 一堆煤,单独运完甲要8小时,乙要12小时,两人共同运,运完时甲比乙多运了96吨。这堆煤有多少吨?2 一条水渠,单独修完,甲组要10天,乙组要15天,两组同时从两端合修,修完时甲组修了360米,乙组修了多少米?3 甲乙两车分别从a b两地同时相对开出,经2小时相遇,相遇后各自继续前进,又经1.5小...

六年级数学难题

1.师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟 完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?2.一个正方形的一边减少,另一边增加米,得到一个长方形,这个长方形的面积与原正方形面积相等 原正方形的边长是多少米?3.枚壹分硬币摞在一起与枚贰...

六年级数学难题

1.一个皮球从高处自由落下,每次接触地面后弹起的高度是前一次落下前高度的2 5.如果皮球从35米的高处落下,那么第三次弹起的高度是多少米?2.小明三天看完一本故事书,第一天看了全书的1 4还少4页,第二天看了全书的1 3还多14页,第三天看了90页,这本书一共多少页?3.一本书有96页,小明第一天看...