数阵图(二)
例1在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。
解:由上一讲例4知中间方格中的数为7。再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。
因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10。考虑到5,7,9已填好,所以x只能取4,6,8或10。经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图)。
这两个解实际上一样,只是方向不同而已。
例2将九个数填入右图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有。
证明:设中心数为d。由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图)。
根据第一行和第三列都可以求出上图中★处的数由此得到。
3d-c-(2d-b)=3d-a-(2d-c),3d-c-2d+b=3d-a-2d+c,d——c+b=d——a+c,2c=a+b,a+b
c=2。值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。
例3在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。
解:由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图)。其它数依次可填(见右下图)。
例4在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。
解:由例2知,右下角的数为。
(8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21。由此可得右下图的填法。
例5在下页上图的每个空格中填一个自然数,使得每行、每列及每条对角线上的三个数之和都相等。
解:由例2知,右下角的数为(6+12)÷2=9(左下图)。因为左下图中两条虚线上的三个数之和相等,所以,“中心数”=(10+6)-9=7。
其它依次可填(见右下图)。
由例3~5看出,在解答3×3方阵的问题时,上讲的例4与本讲的例2很有用处。
练习171.在左下图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都相等。
2.在右上图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都等于24。
3.下列各图中的九个小方格内各有一个数字,而且每行、每列及每条对角线上的三个数之和都相等,求x。
4.在左下图的空格中填入七个自然数,使得每行、每列、每条对角线上的三个数之和都等于48。
5.在右上图的每个空格中填入一个自然数,使得每行、每列及每条对角线上的三个数之和都相等。
6.在右图的每个空格中填入不大于12且互不相同的九个自然数,使得每行、每列、每条对角线上的三个数之和都等于21。
小学四年级奥数教程 数阵图 3
数阵图 三 数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们根据题目条件灵活解题。例1把20以内的质数分别填入下图的一个 中,使得图中用箭头连接起来的四个数之和都相等。分析与解 由上图看出,三组数都包括左 右两端的数,所以每组数的中间两数之和必然相等。20以内共有2,3,5,7,11,13...
小学奥数四年级幻方与数阵图
幻方与数阵图扩展。内容概述 本讲有两部分主要内容 1 幻方的概念和性质,简单幻方的编制 2 把一些数字按照一定要求排列成相应的图形,叫做数阵图。大致分为三类 封闭型数阵图 辐射型数阵图和复合型数阵图。幻方的概念 所谓幻方是指在正方形方格表的每个方格内填入数,使得每行 每列和两条对角线上的各数之和相等...
小学奥数四年级幻方与数阵图
幻方与数阵图扩展。内容概述 本讲有两部分主要内容 1 幻方的概念和性质,简单幻方的编制 2 把一些数字按照一定要求排列成相应的图形,叫做数阵图。大致分为三类 封闭型数阵图 辐射型数阵图和复合型数阵图。幻方的概念 所谓幻方是指在正方形方格表的每个方格内填入数,使得每行 每列和两条对角线上的各数之和相等...