小学六年级数学竞赛试题附答案

发布 2024-02-15 13:50:04 阅读 7873

学习奥数的重要性。

1. 学习奥数是一种很好的思维训练。奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助。

3. 为中学学好数理化打下基础。等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:

少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

新思维教育培训中心数学竞赛试题。

一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)

二、填空题(共40分,每小题5分)

1.在下面的“□”中填上合适的运算符号,使等式成立:

2.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。那么,这个等腰梯形的周长是_ _厘米。

3.一排长椅共有90个座位,其中一些座位已经有人就座了。这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。原来至少有_ _人已经就座。

4.用某自然数a去除1992,得到商是46,余数是r。a=_ r=_

5.“重阳节”那天,延龄茶社来了25位老人品茶。他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。其中年龄最大的老人今年_ _岁。

6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少__ 个学生中一定有两人所借的图书属于同一种。

7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。那么得分最少的选手至少得__ 分,至多得 __分。(每位选手的得分都是整数)

8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。那么,只有当锯得的38毫米的铜管为__ 段、90毫米的铜管为_ _段时,所损耗的铜管才能最少。

三、解答下面的应用题(要写出列式解答过程。列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)

1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。现由甲工程队先修3天。

余下的路段由甲、乙两队合修,正好花6天时间修完。问:甲、乙两个工程队每天各修路多少米?

2.一个人从县城骑车去乡办厂。他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。

又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。

3.一个长方体的宽和高相等,并且都等于长的一半(如图12)。将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米。求这个大长方体的体积。

4.某装订车间的三个工人要将一批书打包后送往邮局(要求每个包内所。

多35本。第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包。这批书共有多少本?

四、问答题(共35分)

1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。问:保证一定获胜的对策是什么?(5分)

2.有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?(6分)

3.个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的(a)、(b)两种形状的铁皮毛坯。现有甲、乙两块铁皮下脚料(如图14、图15),图13、图14、图15中的小方格都是边长相等的正方形。

金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品(“成套”,指(a)、(b)两种铁皮同样多),并且一点材料也不浪费。

问:(1)金师傅应当从甲、乙两块铁皮下脚料中选哪一块?(3分)

2)怎样裁剪所选用的下脚料?(请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯)(5分)

4.只修改21475的某一位数字,就可以使修改后的数能被225整除。怎样修改?(6分)

5.(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?(5分)

2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?(5分)

详解与说明。

一、计算题。

说明:要想得到简便的算法,必须首先对题中每个数和运算符号作全面、

马上就应该知道它可以化为3.6;而3.6与36只差一个小数点,于是,又容易想到把“654.3×36”变形为“6543×3.6”,完成了这步,就为正。

采用了同样的手段,这种技巧本报多次作过介绍。

说明:解这道题可以从不同的角度来观察。解法一是先观察、比较分子部分每个加数(连乘积)的因数,发现了前后之间的倍数关系,从而把“1×3×24”作为公因数提到前面,分母部分也作了类似的变形。

而解法二,是着眼于整个繁分数,由分子看到分母,发现分子部分的左、中、右三个乘。

分子部分括号内三个乘积的和约去了。本题是根据《数学之友》(7)第2页例5改编的。

3.解法一:

解法二:说明:解法一是求等比数列前n项和的一般方法,这种方法本报217期第一版“好伙伴信箱”栏中曾作过介绍。

由于本题中后一个加数总是前一个加数的一半,因而,只要添上一个最小的加数,就能凑成“2倍”,也就是它前面的一个加数,这就不难想到解法二。

二、填空题。

1.解:(1×9×9+2)×(1+9-9+2)×(19-9-2)

或(1×9×9+2)×(1×9÷9×2)×(19-9+2)

(本题答案不唯一,只要所填的符号能使等式成立,都是正确的)

说明:在四个数字之间填上三个运算符号,使它们的计算结果为某个已知数,这是选手们熟悉的“算式谜”题。而这道题却不容易一下子判断括号内的计算结果应该是多少,这就需要把1992分解为三个数连乘积的形式,1992=83×3×2×2×2,因为组成三个乘积为1992的数有多种组合形式,所以填法就不唯一了。

2.解:55+15+25×2=120(厘米)

说明:要算周长,需要知道上底、下底、两条腰各是多长。容易判断:

下底最长,应为55厘米。关键是判断腰长是多少,如果腰长是15厘米,15×2+25=55,说明上底与两腰长度之和恰好等于下底长,四条边不能围成梯形,所以,腰长只能是25厘米。读者从本报190期第三版《任意三根小棒都能围成三角形吗》一文中应当受到启发。

3.解:最少有。

说明:根据题意,可推知这排长椅上已经就座的任意相邻的两人之间都有两个空位。但仅从这个结果中还不能肯定长椅上共有多少个座位,因为已经就座的人最左边一个(最右边一个)既可以坐在左边(右边)起第一个座位上,也可以坐在左边(右边)起第二个座位上(如图16所排出的两种情况,“●表示已经就座的人,“○表示空位)”。

不过,题目中问“至少”有多少人就座,那就应选第二种情况,每三人(○●一组,每组中有一人已经就座。

图164.解法一:由 1992÷46=43……14

立即得知:a=43,r=14

解法二:根据带余除法的基本关系式,有。

1992=46a+r(0≤r<a)

由 r=1992-46a≥0,推知。

由r=1992-46a<a,推知。

因为 a是自然数,所以 a=43

r=1992-46×43=14

说明:本题并不难,因此应尽可能运用简单的方法,迅速地算出答案。解法一是根据 1992÷a的商是 46,因而直接用 1992÷46得到了a和r。解法二用的是“估值法”。

5.解法一:先算出这25位老人今年的岁数之和为。

年龄最大的老人的岁数为。

=90(岁)

解法二:两年之后,这25位老人的平均年龄(年龄处于最中间的老人的年龄)为2000÷25=80(岁)

两年后,年龄最大的老人的岁数为80+12=92(岁)

年龄最大的老人今年的岁数为92-2=90(岁)

说明:解法一采用了“补齐”的手段(详见本报241期第一版《“削平”与“补齐”》一文)。当然,也可以用“削平”法先求年龄最小的老人的岁数,再加上24。

解法二着眼于 25人的平均年龄,先算年龄处于最中间的老人的岁数,算起来更简便些。

6.解:根据“抽屉原理”,可知至少7个学生中有两人所借图书的种类完全相同。

说明:本题是抽屉原理的应用。应用这个原理的关键是制造抽屉。

从历史、文艺、科普三种图书若干本中任意借两本,共有——(史,史)、(文,文)、(科,科)、(史,文)、(史,科)、(文,科)这六种情况,可把它们看作六只“抽屉”,每个学生所借的两本书一定是这六种情况之一。换句话说,如果把借书的学生看作“苹果”,那么至少7个苹果放入六个抽屉,才能有两个苹果放在同一个抽屉内。本题是由本报234期“奥林匹克学校”拦的例2改换而成的。

小学六年级数学竞赛试题附答案

一 选择题。毎小题10分 以下毎题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在毎题的圆括号内。1 科技小组演示自制机器人,若机器人从点a向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达b点,则b点与a点的距离是 米。a 3b 4c 5...

小学六年级数学全国竞赛决赛试题 附答案

小学六年级全国数学竞赛决赛集训试题 一 姓名 得分 一 填空题 每小题6分,共60分 1.已知,其中a b c都是大于0且互不相同的自然数,则 a b c 2.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上的数字之和,如21347。则这类自然数中,最大的奇数是。3.如图1,ab...

2019六年级数学上册竞赛试题 附答案

3 解方程。8分 5 x 3 4.5 x 3.6 12 512 五 操作题。9分 1 画出轴对称图形 画出把三角形向右平移8格后得到的图形 画出三角形绕a点顺时针旋转90 后得到的图形。2 请在下面直线上任意取一点o,并以o点为圆心画一个直径为4厘米的圆。在圆上挖。取一个最大的正方形。剩下的用阴影表...