第一部分练习与思考题。
第1章建立数学模型。
1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)
1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有名商人带名随从过河,船每次能渡人过河,试讨论商人们能安全过河时,与应满足什么关系。
(商人们安全过河问题见姜启源《数学模型》第7页)
1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。问人、狗、鸡、米怎样过河?
1.4 有3对夫妻过河,船至多载两人,条件是任一女子不能在其丈夫不在的情况下与其他的男子在一起。问怎样过河?
1.5 如果银行存款年利率为5.5%,问如果要求到2023年本利积累为100000元,那么在2023年应在银行存入多少元?而到2023年的本利积累为多少元?
1.6 某城市的logistic模型为,如果不考虑该市的流动人口的影响以及非正常死亡。设该市2023年人口总数为8000000人,试求该市在未来的人口总数。当时发生什么情况。
1.7 假设人口增长服从这样规律:时刻的人口为,最大允许人口为,到时间内人口数量与成正比。试建立模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进行比较。
1.8 一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时间?
1.9 你在十层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下几个楼层?
1.10 居民的用水来自一个由远处水库供水的水塔,水库的水来自降雨和流入的河流。水库的水可以通过河床的渗透和水面的蒸发流失。
如果要你建立一个数学模型来**任何时刻水塔的水位,你需要哪些信息?
第2章初等模型。
2.1 学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍。学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:
1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
2)2.1节中的q值方法。
3)d’hondt方法: 将各宿舍的人数用正整数。
相除,其商数如下表:
将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a,b,c行有横线的数分别为2,3,5,这就是3个宿舍分配席位。你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。
4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.2 在超市购物时你注意到大包装商品比小包装商品便宜这种想象了吗。比如洁银牙膏50克装的每支1.
50元,120克装的每支3.00元,二者单位的重量的**比是1.2:
1,试用比例方法构造模型解释这个现象。
1)分析商品的**c与商品重量w的关系。**由生产成本、包装成本和其它成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
2)给出单位重量**c与w的关系。画出它的简图,说明w越大c越小,但是随着w的增加c减小的程度变小。解释实际意义是什么。
2.3 一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用与测量,请你设计按照测量的长度估计鱼的重量的方法。假设鱼池中只有一种鲈鱼,并且得到了8条鱼的如下数据(胸围指鱼身的最大周长):
先用机理分析建立模型,再用数据确定参数。
2.4用已知尺寸的矩形板材加工一定的圆盘,给出几种简便、有效的排列方法使加工出尽可能多的圆盘。
2.5雨滴匀速下降,空气阻力与雨滴表面积和速度平方的乘积成正比,试确定雨速与雨滴质量的关系。
2.6生物学家认为,对于休息状态的热血动物消耗的能量主要用于维持体温,能量与从心脏到全身的血流量成正比,而体温主要通过身体表面散失,建立一个动物体重与心率之间关系的模型,并用下面的数据加以检验。
2.7 举重比赛按照运动员的体重分组,你能在一些合理、简化的假设下建立比赛成绩与体重之间的关系吗。下面是一界奥运会竞赛的成绩,可供检验你的模型。
2.8 速度为的风吹在迎风面积为的风车上,空气密度是。用量纲分析方法确定风车获得的功率与,,的关系。
2.9 雨速的速度与空气密度、粘滞系数和重力加速度有关,其中粘滞系数的定义是:运动物体在流体中受的摩力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数。
用量纲分析方法给出速度的表达式。
2.10 原子弹**时巨大的能量从**点以冲击波形式向四周传播。据分析在时刻冲击波达到的半径与释放能量,大气密度,大气压强有关(设时)。用量纲分析方法证明,,是未定函数。
2.11 用量纲分析方法研究人体浸在匀速流动的水里时损失的热量。记水的流速,密度,比热,粘性系数,热传导系数,人体尺寸。
证明人体与水的热交换系数与上述各物理量的关系可表为,是未定函数,定义为单位时间内人体的单位面积在人体与水的温差为时的热量交换。
2.12 在**《格里佛游记》中,**国中的人们决定给格里佛相当与一个小人食量1728倍的食物。他们是这样推理的,因格里佛身高是小人的12倍。
他的体格是小人的倍。所以他需要的食物是一个小人的食量的1728倍。为什么他们的推理是错误的?
正确的答案是什么?
2.13 战后olympic运动会女子铅球记录如下:
你是否可以从这些数据中**2023年的奥运会女子铅球的最佳成绩。
第3章简单的优化模型。
3.1 在存贮模型的总费用中增加购买货物本身的费用。重新确定最优订货周期和订货批量。
证明在不允许缺货模型中结果与原来的一样。而在允许缺货模型中最优订货周期和定货批量都比原来结果减少。
3.2 建立不允许缺货的生产销售存贮模型。设生产速率为常数,销售速率为常数,在每个生产周期内,开始的一段时间一边生产一边销售,后来的一段时间()只销售不生产,画出贮存量的图形。
设每次生产准备费为,单位时间每件产品贮存费为,以总费用最小为目标确定最优生产周期。讨论和的情况。
3.3 在3.3节森林救火模型中,如果考虑消防队员的灭火速度与开始救火时的火势有关,试假设一个合理的函数关系,重新求解模型。
3.4 在雨中从一处沿直线跑道另一处,若雨速为常数且方向不变。试建立数学模型讨论是否跑的越快,淋雨量越少。
将人体简化成一个长方体,高(颈部以下),宽,厚,设跑步距离,跑步最大速度,雨速,降雨量,记跑步速度为。按以下步骤进行讨论:
1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。
2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为,如图1,建立总淋雨量与速度及参数,,,之间的关系,问速度多大,总淋雨量最少。计算,时的总淋雨量。
3)雨从背后吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为,如图2。建立总淋雨量与速度及参数,,,之间的关系,问速度多大,总淋雨量最少。计算时总淋雨量。
4)以总淋雨量为纵轴,速度为横轴,对(3)作图(考。
虑的影响),并解释结果的实际意义。
5)若雨线方向与跑步方向不在同一平面内,模型会有什。
么变化。图1图2
3.5 甲乙两公司通过广告来竞争销售商品的数量,广告费分别是和。设甲乙公司商品的售量在两公司总售量中占的份额,是它们的广告费在总广告中所占份的函数和。
又设公司的收入与售量成正比,从收入中扣除广告费即为公司的利润。试构造模型的图形,并讨论甲公司怎样确定广告费才能使利润最大。
1)令,则。画出的示意图。
2)写出甲公司利润的表达式。对于一定的,使最大的的最优值应满足什么关系。用**法确定这个最优值。
3.6 人行走时作的功是抬高人体重心所需势能与两腿运动所需动能之和。试建立模型讨论在作功最小的准则下每秒走几步最合适(匀速行走)。
1)设腿长,步长,证明人体重心在行走时升高。
2)将腿看作均匀直杆,行走看作腿绕腰部的转动。设腿的质量,行走速度,证明单位时间所需动能为。
作业与思考题
公路工程机械化施工与管理 测试与思考题。一 序言。1.简述公路工程机械化施工的特点和要求。2.能否说在机械化施工中机械化程度越高,其机械化水平也越高,为什么?3.施工机械管理的具体内容是什么?第一篇机械化施工技术 第二章 第六章 1.简述提高推土机生产率的措施。2.推土机填筑路堤时,在平原地区和丘陵...
2019习题与思考题
第一章习题与思考题 1 常见的金属晶格类型有哪些?试绘图说明其特征。2 实际金属中有哪些晶体缺陷?晶体缺陷对金属的性能有何影响?3 为什么单晶体具有各向异性,而多晶体在一般情况下不显示各向异性?4 试计算面心立方晶格的致密度。5 什么是位错?位错密度的大小对金属强度有何影响?6 晶体在结晶时,晶核形...
习题思考题
提交要求 报告和所查的文献一起提交,报告的重点是在目前已有技术上的创新思路。完成后提交电子文档。发送到 写明学号班级姓名。评分为1 5分。每人最多能选两个题。1.传动的种类与创新。查阅文献,总结各种传动技术的基础上提出创新思路。2.泵的种类总结与创新思考。只要能对流体加压 提升,使之运动的装置,都属...