半导体材料选修

发布 2021-12-18 06:08:28 阅读 5086

半导体材料。

总的来说,半导体材料按化学成分和内部结构,大致可分为以下几类:

元素半导体:有锗、硅、硒、硼、碲、锑等。50 年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到 60 年代后期逐渐被硅材料取代。

用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。

化合物半导体:由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。

其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。

无定形半导体材料:用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。

有机半导体材料:已知的有机半导体材料有几十种,包括萘、 蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。

半导体材料的电导率在0.001~ 10^9欧·厘米范围。在一般情况下,其电导率随温度的升高而增大,在各种外界因素如光、热、磁、电等作用于半导体时会引起半导体产生一定的物理效应和现象,这些可统称为半导体材料的半导体性质。

构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(zns)的结构。

半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。2023年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。

2023年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。

2023年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为it产业的新发动机。

不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

所有的半导体材料都需要对原料进行提纯,要求的纯度在 6 个“9”以上 ,最高达 11 个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯; 另一类是把元素先变成化合物进行提纯, 再将提纯后的化合物还原成元素, 称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。

化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。 由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。

绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达 300 毫米。

在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。

水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、 磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。

在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化学气相外延,其次是液相外延。

金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。

相对于半导体设备市场,半导体材料市场长期处于配角的位置,但随着芯片出货量增长,材料市场将保持持续增长,并开始摆脱浮华的设备市场所带来的阴影。

不同的半导体材料,其应用也不相同:

元素半导体材料:硅在当前的应用相当广泛,他不仅是半导体集成电路,半导体器件和硅太阳能电池的基础材料,而且用半导体制作的电子器件和产品已经大范围的进入到人们的生活,人们的家用电器中所用到的电子器件80%以上与案件都离不开硅材料。锗是稀有元素,地壳中的含量较少,由于锗的特有性质,使得它的应用主要集中与制作各种二极管,三极管等。

而以锗制作的其他钱江如探测器,也具有着许多的优点,广泛的应用于多个领域。

有机半导体材料:有机半导体材料具有热激活电导率,如萘蒽,聚丙烯和聚二乙烯苯以及碱金属和蒽的络合物,有机半导体材料可分为有机物,聚合物和给体受体络合物三类。有机半导体芯片等产品的生产能力差,但是拥有加工处理方便,结实耐用,成本低廉,耐磨耐用等特性。

非晶半导体材料:非晶半导体按键合力的性质分为共价键非晶半导体和离子键非晶半导体两类,可用液相快冷方法和真空蒸汽或溅射的方法制备。在工业上,非晶半导体材料主要用于制备像传感器,太阳能锂电池薄膜晶体管等非晶体半导体器件。

化合物半导体材料:化合物半导体材料种类繁多,按元素在周期表族来分类,分为三五族,二六族,四四族等。如今化合物半导体材料已经在太阳能电池,光电器件,超高速器件,微波等领域占据重要位置,且不同种类具有不同的应用。

总之,半导体材料的发展迅速,应用广泛,随着时间的推移和技术的发展,半导体材料的应用将更加重要和关键,半导体技术和半导体材料的发展也将走向更高端的市场。

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致电子工业革命;上世纪70年代初石英光导纤维材料和gaas激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

然而半导体材料在生产制备的过程中,由于生产工艺生产设备的的不同,其不仅对加工者的身体产生危害,还对环境带来压力,还有一些污染当今没被然泪定性为污染,随着人类社会的发展和技术的不断进步,相信这些问题会逐渐被解决,到那时,我们不仅享受着半导体材料给我们带来的信息时代的便捷,也享受着舒适的人居环境,我们期待着。

半导体材料

1.简述半导体材料的概念,特征及发展历史,并分别表明代表性的材料。2.杂质条纹,组分过冷,硅单晶质量检测的要求。3 简述晶体生长的三种方式 均匀成核与非均匀成核 简述晶体长大的三种动力学模型及其要点 光滑面与粗糙面的定义。4.简述硅锗单晶的生长方法及定义。5 简述硅锗的杂质的分类 简述杂质对材料性能...

半导体材料

半导体材料的类型。半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体 无机化合物半导体 有机化合物半导体和非晶态与液态半导体。半导体材料的晶体结构有金刚石型,闪锌矿型,纤锌矿型以及nacl型。而其中金刚石型的有si,金刚石...

半导体材料

深圳大学考试答题纸。以 报告等形式考核专用 二 一三 二 一四学年度第一学期。作者 陈利锋。137 摘要 锗 旧译作鈤 是一种化学元素,它的化学符号是ge,原子序数是32。它是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近。锗 锡和铅在元素周期表中是同属一族,后两者早被古代人们...